

x6010 Managed T1/E1-to-Fiber Network Interface Device (NID)

User Guide

33493 Rev. E

www.transition.com

Trademarks

All trademarks and registered trademarks are the property of their respective owners.

Copyright Notice/Restrictions

Copyright © 2010-2018 Transition Networks. All rights reserved. No part of this work may be reproduced or used in any form or by any means (graphic, electronic or mechanical) without written permission from Transition Networks. Printed in the U.S.A.

ION System x6010 Managed T1/E1-to-Fiber Network Interface Device (NID) User Guide, 33493 Rev. E

Contact Information

Transition Networks 10900 Red Circle Drive Minnetonka, MN 55343 USA

tel: +1.952.941.7600 | toll free: 1.800.526.9267 | fax: 952.941.2322

Revision History

Rev	Date	Description			
А	05/23/11	Revised for firmware version 1.1. 0 .			
В	09/08/11	Revised for firmware version 1.2.0.			
С	12/23/16	Revised for firmware version 1.2.6 and updated default and LBO settings.			
D	3/3/17	Add DoC and update contact information.			
Е	11/5/19	Update specifications and added optional accessories. Add Local Management of Cards in a Remote Un-managed Chassis at FW v 1.2.6. Update for FW v 2.0.1.			

Cautions and Warnings

Definitions

Cautions indicate that there is the possibility of poor equipment performance or potential damage to the equipment. Warnings indicate that there is the possibility of injury to person.

Cautions and Warnings appear here and may appear throughout this manual where appropriate. Failure to read and understand the information identified by this symbol could result in poor equipment performance, damage to the equipment, or injury to persons.

Cautions

Do not ship or store devices near strong electrostatic, electromagnetic, magnetic, or radioactive fields.

Caution: When handling chassis Network Interface Devices (NIDs) observe electrostatic discharge precautions. This requires proper grounding (i.e., wear a wrist strap).

Caution: Copper based media ports, e.g., Twisted Pair (TP) Ethernet, USB, RS232, RS422, RS485, DS1, DS3, Video Coax, etc., are intended to be connected to intra-building *(inside plant)* link segments that are not subject to lightening transients or power faults. They are **not** to be connected to inter-building *(outside plant)* link segments that are subject to lightening.

Caution: **Do not** install the NIDs in areas where strong electromagnetic fields (EMF) exist. Failure to observe this caution could result in poor NID performance.

Caution: Read the installation instructions before connecting the chassis to a power source. Failure to observe this caution could result in poor performance or damage to the equipment.

Caution: Only trained and qualified personnel should install or perform maintenance on the x6010. Failure to observe this caution could result in poor performance or damage to the equipment.

Caution: Do not let optical fibers come into physical contact with any bare part of the body since they are fragile, and difficult to detect and remove from the body.

Caution: Do not bend any part of an optical fiber/cable to a diameter that is smaller than the minimum permitted according to the manufacturer's specification (usually about 65 mm or 2.5 in)!

Warnings

Warning: Use of controls, adjustments or the performance of procedures other than those specified herein may result in hazardous radiation exposure.

Warning: Visible and invisible laser radiation when open. **Do not** look into the beam or view the beam directly with optical instruments. Failure to observe this warning could result in an eye injury or blindness.

Warning: DO NOT connect the power supply module to external power before installing it into the chassis. Failure to observe this warning could result in an electrical shock or death.

Warning: Select mounting bracket locations on the chassis that will keep the chassis balanced when mounted in the rack. Failure to observe this warning could allow the chassis to fall, resulting in equipment damage and/or possible injury to persons.

Warning: Do not work on the chassis, connect, or disconnect cables during a storm with lightning. Failure to observe this warning could result in an electrical shock or death.

See Appendix A on page 247 for Electrical Safety Warnings translated into multiple languages.

Table of Contents

Section 1: Introduction	10
Document Overview	10
Product Overview	10
Features	10
Typical Application	
Applicable Standards and RFCs	
Feature Descriptions	
AIS (Alarm Indication Signal)	
Loopback Test	
LOS (Loss of Signal) Detection	
In-band Fiber Loopback Code Detection	
HTTP	
Remote Management	
Firmware Upgrade	
Management Access Methods	
TFTP (Trivial File Transfer Protocol)	
Optional Accessories (sold separately)	
Models (Chassis and Standalone)	
Physical Specifications	
Connectors	
LED Descriptions	
Jumper Settings	
DIP Switches	
Documentation Conventions	
Related Manuals and Online Help	
For More Information	30
Section 2: Installation and System Setup	31
General	31
Installing the Chassis Model (C6010)	31
Installing the Standalone Model (S6010)	32
Rack Mount Installation	32
Tabletop Installation	33
Wall Mount Installation	34
Connecting to AC Power	35
Installing SFPs	
Connecting the C6010 to the S6010	36
Accessing the NIDs	40
Access via Local Serial Interface (USB)	40
Access via an Ethernet Network	
Initialization (Default) Configuration	45
Section 3: Management Methods	46
General	
IONMM Managed x6010	
Managing Slide-In and Remote Modules Using CLI Commands	

Managing Slide-In and Remote Modules via the Web Interface	
Managing Standalone Modules Using CLI Commands	51
Managing Standalone Modules via the IONMM Web Interface	52
Menu Descriptions	54
Reboot, Reset, and Power Off Function Notes	56
Section 4: Configuration	59
General	
System Configuration	60
System Configuration – CLI Method	60
T1 System Configuration – Web Method	
T1 Ports Configuration	
T1 Ports Configuration – CLI Method	62
T1 Ports Configuration – Web Method	63
Port Loopback Tests	66
Port Loopback Test – CLI Method	66
Port Loopback Test – Web Method	68
TDM Mode Configuration	70
Configuring TDM Mode – CLI Method	70
Configuring TDM Mode – Web Method	71
Section 5: Operation	74
General	
Backup and Restore Operations (Provisioning)	74
Note on Remote (L2D) Module Backup, Restore, and Upgrade	
Backing Up Slide-In and Remote Module Configuration	
Backing Up Standalone Modules	78
Editing the Config File (Optional)	80
Restoring Slide-In and Remote Modules' Configuration	81
Restoring Standalone Modules	
Back Up and Restore File Content and Location	87
IONMM Backup All / Restore All	87
Displaying Information	88
Reset to Factory Defaults	88
•	88
Resetting Defaults – Web Method	89
File Status after Reset to Factory Defaults	89
Resetting Uptime	
Reset Uptime – CLI Method	
Reset Uptime – Web Method	91
Reboot	
Rebooting – CLI Method	
Rebooting – Web Method	
Reboot File Content and Location	
Upgrade the IONMM and/or NID Firmware	
Upgrading IONMM and/or NID Firmware – CLI Method	
Upgrading IONMM and/or NID Firmware – Web Method	
Upgrading Slide-In and Remote Modules Firmware via TFTP	
Firmware Upgrade File Content and Location	107

Additional Upgrade Procedures	107
Replacing a Chassis Resident NID	108
Section 6: Command Line Interface (CLI) Reference	109
General	109
Command Line Editing	109
Display Similar Commands	109
Partial Keyword Lookup	109
Recall Commands	109
Keystroke Commands	110
Command Descriptions	111
Section 7: Troubleshooting	127
General	127
Basic ION System Troubleshooting	127
Error Indications and Recovery Procedures	128
LED Fault and Activity Displays	129
Problem Conditions	130
CLI Messages	141
Web Interface Messages	173
The Config Error Log (config.err) File	188
config.err Messages	189
config.err Message Responses	189
Webpage Messages	192
Windows Event Viewer Messages	202
ION System Tests	203
DMI (Diagnostic Maintenance Interface) Test	203
Set Debug Level	211
DIP Switches and Jumper Settings	212
PCB Identification	212
C6010 PCB	212
S6010 NID Switch Locations	213
x6010-10xx PCB (C6010 with SFP and BNC)	217
In-band Loopback Code Detect Procedure	218
Third Party Troubleshooting Tools	219
Third Party Tool Messages	231
HyperTerminal Messages	231
Ping Command Messages	234
Telnet Messages	234
TFTP Server Messages	236
PuTTY Messages	237
Alarm Indication Signal – Alarm Condition	
LOS Detection	
T1 Error Events and Alarm Conditions	
T1 Error Events	
D4 and ESF Alarm Conditions	240
Recovery Procedures	
Recording Model Information and System Information	
Technical Support	244

Contact Us	244
Appendix A: Warranty and Compliance Information	245
Warranty	245
Compliance Information	
Declaration of Conformity	
Electrical Safety	
Elektrische Sicherheit	
Elektrisk sikkerhed	248
Elektrische veiligheid	248
Sécurité électrique	248
Sähköturvallisuus	
Sicurezza elettrica	
Elektrisk sikkerhet	
Segurança eléctrica	
Seguridad eléctrica	
Elsäkerhet	248
Appendix B: Factory Defaults	249
Device-Level Factory Defaults	
Port-Level Factory Defaults	
Supported Line Build Out Matrix	
Appendix C: Configuration Quick Reference – CLI	251
For SNMP MIB Trap Information	
·	
Appendix D: Cable Specifications	
Fiber Specifications	253
Fiber Cable	
T1/E1 Cable	253
Twisted-Pair Copper Cable	253
T1 TP/UTP	253
E1 TP/UTP	253
Appendix E: Local Management of Cards in a Remote Un-managed Chassis	254
Glossary	262
List of Figures	
Figure 1: Typical x6010 User Application Scenario	11
Figure 2: Typical AIS Application	
Figure 3: Loopback on copper and fiber port of Media Converter A	
Figure 4: Typical Loopback function on a Fiber port	
Figure 5: Typical Loopback function on a Copper port	
Figure 6: Typical Remote Management Application	
Figure 7: x6010 Remote Management Topology	
Figure 8: x6010 Models	
Figure 9: C6010 Front Panels	24

Figure 10: S6010 Front Panels	25
Figure 11: S6010 DIP Switches	26
Figure 12: C6010 DIP Switches	27
Figure 13: Chassis Installation	31
Figure 14: Tabletop Installation	33
Figure 15: Wall Mount Installation	34
Figure 16: AC Power Connection	35
Figure 17: SFP Installation	36
Figure 18: CLI Location Hierarchy	47
Figure 19: x6010 PCB Layout	212
Figure 20: x6010 Switch Locations	213
Figure 21: x6010-10xx Layout	217
Figure 22: Initiate a Loopback from a Test Set	218
List of Tables	
Table 1: HTTP Parameters	
Table 2: x6010 Models	
Table 3: Physical Specifications	
Table 4: x6010 Connector Descriptions	
Table 5: Documentation Conventions	
Table 6: System-Level Menu Description	
Table 7: Port-Level Menu Description	
Table 8: Back Up and Restore File Content and Location	
Table 9: File Status after a Reset to Factory Defaults	
Table 10: File Content and Location after a System Reboot	
Table 11: File Content and Location after a Firmware Upgrade	
Table 12: Keystroke Editing Commands	
Table 13: DMI Parameters	
Table 14: Device-Level Factory Defaults	
Table 15: Port-Level Factory Defaults	
Table 16: Line Build Out (LBO) Details	

Section 1: Introduction

Document Overview

This manual provides the user with an understanding of the Transition Networks (TN) x6010 Network Interface Device (NID).

Product Overview

The ION T1/E1 model x6010 is a copper-to-fiber NID with remote management that provides a solution to extend T1 or E1 circuits over fiber, and remotely manage them in-band from admin locations.

The x6010 NIDs are designed as either a standalone module (S6010) or a slide-in module (C6010) that is installed in an ION system chassis. In either configuration, these devices are designed to convert the copper ports on T1/E1 devices, such as a PBX or T1/E1 router, to multimode or single mode fiber with advanced services and functions.

The x6010 supports Small Form Pluggable (SFP) transceivers to support a variety of fiber types, distances and wavelengths to provide maximum flexibility across a variety of network topologies. The use of Coarse Wave Division Multiplexing (CWDM) SFPs can be utilized to further increase the bandwidth capacity of the fiber infrastructure. The T1/E1NID must be used in pairs. A typical installation includes a chassis card (C6010) installed in a local ION chassis and a stand-alone device (S6010) installed at a remote location.

Features

The x6010 provides the following services and functions.

- Converts copper ports on T1/E1 devices, such as a PBX or T1/E1 router, to multimode or single mode fiber
- Alarm Indication Signal (AIS) LED
- Can be used with fractional T1/E1 circuits
- Firmware upgrade
- Remote management
- Local or Remote Loopbacks on copper or fiber port
- Switch-selectable RJ-48 connectors for T1 or E1
- Jitter attenuators optimize Bit Error Rate performance
- Network debug procedures make BER testing more convenient
- Built-in troubleshooting with selectable TAOS (Transmit All Ones): a switch on the fiber and copper interfaces allows testing of all T1/E1 equipment on that network segment to ensure the network links

You can manage the following x6010 services and functions via the x6010 application software:

- Report Model information, such as serial number, model number, firmware revision, etc.
- Report link status on copper and fiber ports
- Report LBO, Long Haul, Short Haul status
- Report AIS detected status on copper and fiber port
- Loopback Enable/Disable on copper or fiber port
- TAOS Enable/Disable on copper and fiber port
- Report circuit ID on device and ports
- DMI on Fiber port

Typical Application

The x6010 applications can include:

- Interconnect campus / MAN. A T1 link is a common means of campus / Metropolitan Area Network (MAN) interconnects.
- Extend a T1 to other buildings in a campus or MAN.
- Link two PBXs or extend T1 from a demarc (demarcation point).

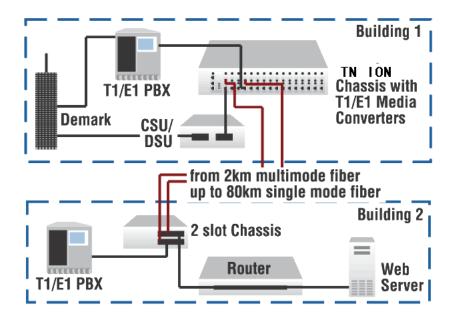


Figure 1: Typical x6010 User Application Scenario

Applicable Standards and RFCs

The x6010 complies with the following hardware standards:

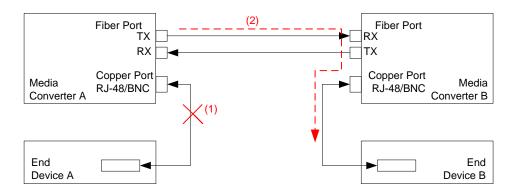
- ANSI T1.102, T1.403, and T1.408
- ITU I.431, G.703, G.736, G.775, and G.823
- ETSI 300-166, 300-233, and TBR12/13
- AT&T Pub 62411
- Regulatory Compliance for Emission: FCC Class A; EN55022 Class A
- Regulatory Compliance for Immunity: EN55024
- Safety Compliance: Unit: UL listed, CE Mark
- In T1 mode, declaring/clearing AIS detection complies with ANSI T1.231. In E1 mode, declaring/clearing AIS detection complies with ITU G.775 or ETSI 300233, as selected.

The x6010 complies with the following IETF RFCs:

- HTTP protocol: IETF RFC 2616
- SNMP protocol: IETF RFC 1157, RFC 1158, and RFC 2578
- TFTP protocol: IETF RFC 1350

Feature Descriptions

The x6010 features are described in the following sub-sections.


AIS (Alarm Indication Signal)

The x6010 provides AIS (Alarm Indication Signal) support.

When the x6010 detects a signal lost or framing lost on one port's receiving direction, it will send out an Alarm Indication Signal (AIS) through another port to alert the receiving end that a segment of the end-to-end link has failed at a logical or physical level.

The x6010 will generate the AIS by transmitting all ones (TAOS).

You can enable or disable AIS transmit on each x6010 port via the Web interface, FocalPoint (FP), and the Command Line Interface (CLI).

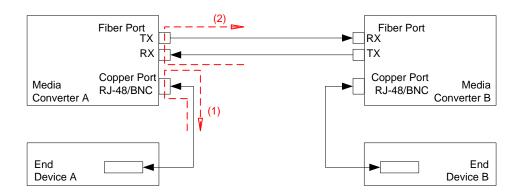
- (1) Copper Port in End Device A detects a signal lost
- (2) End Device A transmits AIS signal through Fiber Port to End Device B

Figure 2: Typical AIS Application

The AIS transmit function can be enabled or disabled on each port (Copper Port and Fiber Port) by setting TAOS to Enable or Disable. If the AIS transmit function is enabled on one port and signal lost is detected, the x6010 will transmit all ones to the receiving end device; if the AIS function is disabled, no action will be performed.

If the x6010 receives an AIS signal (All Ones frame) from one port, the LED (SDC/SDF- Signal Detect on Copper/Fiber) displays as yellow to indicate AIS is detected on that port (see "LED Descriptions" on page 29). The x6010 software transmits an AIS detect trap at the same time (see the "SNMP MIBs" section on page 21 for trap descriptions).

If Media Converter A in Figure 2 above detects a signal lost on a copper port and the AIS function is enabled (TAOS is enabled) on that port, Media Converter A will Transmit All Ones to Media Converter B through the fiber link. Media Converter B's SDF LED will display as yellow to indicate an AIS signal is detected on the fiber port. The AIS signal will then be transmitted to End Device B.


In T1 mode, the criteria for declaring/clearing AIS detection are in compliance with the ANSI T1.231. In E1 mode, the criteria for declaring/clearing AIS detection comply with the ITU G.775 or the ETSI 300233, as selected.

Loopback Test

The x6010 provides Loopback (LB) test support with three different loopback configurations: copper loopback, fiber loopback, and inband loopback.

The Loopback feature puts the x6010 in a mode that lets it loop back the signal from the RX port to the TX port on either media for testing and troubleshooting purposes. You can enable or disable the Loopback function on an x6010 copper port or fiber port via the Web interface, FocalPoint (FP), and the Command Line Interface (CLI).

Test signals from a test device (e.g., Fireberd, etc.) can then be inserted into the link and looped back and received by a device to test a particular segment of the link (i.e., copper or fiber).

- (1) Loopback on copper port;
- (2) Loopback on fiber port.

Figure 3: Loopback on copper and fiber port of Media Converter A

If the Loopback function is enabled on the copper port of Media Converter A, End Device A is the tester; the test signal is inserted into the copper RX of Media Converter A and then looped back and received by the copper TX of Media Converter A.

If the Loopback function is enabled on the Fiber port of Media Converter A, End Device B is the tester; the test signal will be inserted into the Fiber RX of Media Converter A through Media Converter B and be looped back at Fiber port of Media Converter A and received by End Device B via Media Converter B.

The x6010 Loopback function cannot be enabled on both copper and fiber ports at the same time; an error message displays if attempted.

A typical x6010 Fiber port Loopback applications is shown below.

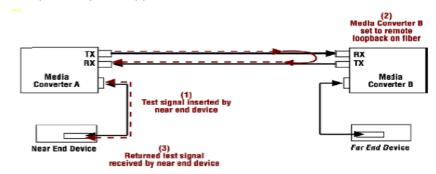


Figure 4: Typical Loopback function on a Fiber port

A typical x6010 Copper port Loopback applications is shown below.

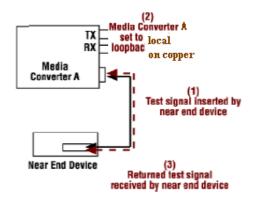


Figure 5: Typical Loopback function on a Copper port

LOS (Loss of Signal) Detection

The x6010 Loss of Signal (LOS) detector monitors the amplitude of the incoming signal level and pulse density of the received TIP/RING signals. A LOS condition is detected when the incoming signal has "no transitions". The LOS condition is cleared when the incoming signal has "transitions". In addition, the x6010 application software may get the LOS status via interface with the FPGA. LOS detection is provided on the x6010 coax, fiber and copper interfaces as link down and link up traps and **show** commands.

In-band Fiber Loopback Code Detection

This function enables detection and loopback of the fiber interface based on NIU Facility 2 (FAC2) loopback codes. Certain test devices (e.g., T-BERD 2310) can send in-band loopback codes to the local copper (TP) interface, which are then transmitted to the remote device via the fiber. The remote device can detect and react to this and activate and de-activate the loopback codes. For detection, these codes must be sent for at least 5 seconds.

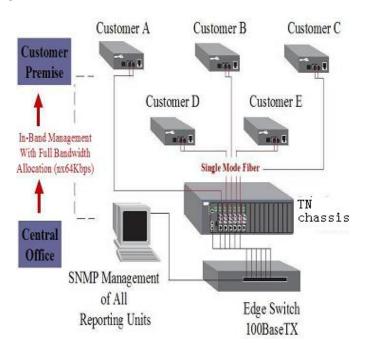
The Inband Fiber Loopback Code Detector can track loopback activate/deactivate codes in a framed or unframed T1 data stream. The received data stream is compared with the target activate/deactivate code whose length and the content are pre-defined. When the received data stream matches the target activate/deactivate code and repeats for 4 seconds, this register field indicates the detection of the inband loopback code.

HTTP

You can manage the x6010 via the IONMM's HTTP service to check all of the configuration parameters and modify some of them via the Web interface.

The table below shows the Global, Fiber port, and Copper port parameters, their Properties, and the valid range of entries supported. The Properties column shows "Read only" (parameters that can only be displayed) or "Read & Write" (parameters that are user-configurable), or "Button".

Table 1: HTTP Parameters


Parameter	Property	Range
Global Parameters		
Serial number	Read only	
Model number	Read only	
Software Revision	Read only	
Hardware Revision	Read only	
Bootloader Revision	Read only	
System Name	Read & Write	Alpha, numeric, and special characters allowed; spaces between characters <u>not</u> allowed.
System Uptime	Read only	
Configuration Mode	Read only	Hardware Software
Number of Ports	Read only	
System Reboot	Button	
Reset to Factory Defaults	Button	
TDM Mode	Read only	T1 E1
Device Description	Read & Write	Device description display string of up to 64 alpha, numeric or special characters.
Fiber Port Parameters		
- Link	Read only	Down Up
- Transmit All ones	Read & Write	Enable Disable
- AIS Transmit	Read & Write	Enable Disable
- Alarm Indication Signal	Read only	Normal Alarm
- Loopback	Read & Write	No Loopback PHY Layer
- Connector	Read only	Description string of connector
- Circuit ID	Read & Write	Circuit ID display string
- DMI		
DMI ID	Read only	
Connector Type	Read only	

Nominal Bit Rate	Read only	
Wavelength	Read only	
Receive Power	Read only	
Receive Power Alarm	Read only	Normal Low Warning High Warning Low Alarm High Alarm
Rx Power Intrusion Threshold	Read & Write	0-65,535
Temperature	Read only	
Temperature Alarm	Read only	Normal Low warning high warning low Alarm high Alarm
Transmit Bias	Read only	
Transmit Bias Alarm	Read only	Normal Low warning high warning low Alarm high Alarm
Transmit Power	Read only	
Transmit Power Alarm	Read only	Normal Low warning high warning low Alarm high Alarm
Length (Single Mode)	Read only	
Length (50um, Multi Mode)	Read only	
Length (62.5 um, Multi Mode)	Read only	
Length (copper)	Read only	
Copper Port		
- Link	Read only	Down Up
- Transmit All ones	Read & Write	Enable Disable
- AIS Transmit	Read & Write	Enable Disable
- Alarm Indication Signal	Read only	Normal Alarm
- Loopback	Read & Write	No Loopback PHY Layer
- Long Haul	Read only	Yes No
- Line build out	Read only	Description string of LBO
- Connector	Read only	Description string of connector
- Circuit ID	Read & Write	Circuit ID display string

Remote Management

Remote Management over fiber allows access to the remote device to obtain status, actively configure remote device features, and perform remote device firmware upgrades.

A typical remote management scenario is shown below.

Figure 6: Typical Remote Management Application

In the figure above, devices from Customer A to Customer E can all be remotely managed via the TN Chassis.

A remote S6010 device is connected with local C6010 device through the fiber link, with a specific channel on the fiber link reserved and used for the management traffic. This management channel is independent of the TDM payload channels; the management channel and TDM payload channels will not impact each other.

The x6010 Remote Management (RM) protocol lets applications exchange management traffic between local C6010 and remote S6010 devices. The RM protocol provides the interaction protocol for Packet Handling, BC Packet TX/RX and Remote Packet TX/RX. The RM protocol provides transparent packet forwarding on the C6x10 and packet TX/RX redirection on the S6x10, eliminating the differences between the C6x10 and S6x10 for the IONMM and its upper layer applications.

Note that the current ION platform supports up to one level of x6010 device remote management.

Version 1.2.6 of the x6010 Series supports the management of a C6010 when installed in an unmanaged ION chassis. Management is supported by another C6010 installed in a managed chassis when the two are linked together via a fiber cable. Version 1.2.6 also supports remote firmware upgrades of a C6010 in an unmanaged chassis. See the Release Notes for known Feature limitations.

All management traffic between the IONMM and the remote S6010 are relayed and forwarded through the local C6010. Traffic between the IONMM and C6010 is exchanged on the ION chassis' backplane Ethernet bus (BPC), while traffic between the local C6010 and remote S6010 is exchanged on the specific management channel (see figure below) .

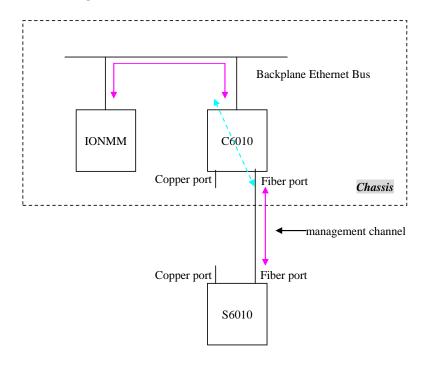


Figure 7: x6010 Remote Management Topology

Remote devices are detected by the IONMM through the internal LLDP protocol. Each time a remote device is powered up, it periodically sends out an LLDP packet to notify the IONMM that it is up. When the IONMM receives such LLDP packets, it updates the entire ION topology based on the information carried in the LLDP packet.

Firmware Upgrade

The x6010 can be upgraded via an IONMM installed in an ION chassis. You can select the target NID via the Web interface / Focal Point / CLI and start the firmware upgrade operation. After the x6010 finishes upgrading, it will reboot itself to load the new firmware. The upgrades do not require reconfiguration of the SNMP management or converter feature settings.

The x6010 has two parts that need to be upgraded; one is the device firmware (AVR) and the other is the FPGA (Field Programmable Gate Array) firmware. For simplicity, these two parts are combined into one firmware file and upgraded in one step, transparently.

You can upgrade the x6010 to a specific revision via the IONMM, which means the x6010 can be upgraded to a newer revision firmware or can be downgraded to an older revision firmware. (Attempting to upgrade to the existing revision firmware version is not actually performed, and a message displays indicating this.)

Certain conditions will cause the firmware upgrade to fail:

- The communication path between x6010 and IONMM is corrupted, causing an upgrade protocol timeout,
- No valid firmware file stored in the IONMM (e.g., no specified x6010 firmware revision, or a corrupted firmware file).
- The firmware revision is the same.
- Programming the internal Flash fails.

If the x6010 bootloader cannot detect valid firmware installed after device is powered up or rebooted, it enters upgrade mode automatically to request valid firmware from the IONMM. When the x6010 finishes upgrading successfully, it reboots itself and the bootloader checks the firmware again. If it passes, the x6010 loads the new firmware and enters normal operating mode. Otherwise, the x6010 returns to Upgrade mode. Note: Only the x6010 in the process of being upgraded will have its FPGA forced into factory mode. The FPGA mode of the connected x6010 remains in application mode. A C6010 can only upgrade a remote S6010 with the same version number.

The three methods of firmware upgrades are:

- Web interface
- Focal Point
- CLI command

A remotely-managed x6010 can be upgraded remotely as mentioned above. Note that the current ION platform supports up to one level of x6010 device remote management.

Management Access Methods

Management of the x6010 is accomplished through one of the following methods.

• Universal Serial Bus (USB) – uses a command line interface (CLI) to access and control the x6010 through a locally connected workstation.

- Telnet session uses the CLI to access and control the x6010 through the network.
- Simple Network Management Protocol (SNMP) both public and private Management Information Bases (MIBs) allowing for a user to easily integrate and manage the ION platform with an SNMP based network management system (NMS).

TFTP (Trivial File Transfer Protocol)

The TFTP client provides uploading and downloading of files out of the device's file system. Typical applications for this protocol on this device include backup of configuration, restore known configuration from a file, firmware image upgrade/downgrade, log files backup, certificate download for SSL applications etc.

Optional Accessories (sold separately)

SFP Modules: SFP port uses standard 100Base-x/oc-3 SFP. See the TN SFP webpage.

Power Supply: SPS-2460-SA Wide Input (24 - 60VDC) Stand-Alone Power Supply included.

Mounting Options:

WMBL Wall Mount Bracket 4" [102 mm]
WMBD DIN Rail Bracket 5" [127 mm]
E-MCR-05 12-Slot Media Converter Rack
RMS19-SA4-02 4-Slot Media Converter Shelf

Country-specific Power Supply: To order the corresponding country specific power supply, add the extension from the list below to the end of the SKU; -NA = Country Code, NA = North America, LA = Latin America, EU = Europe, UK = United Kingdom, SA = South Africa, JP = Japan, OZ = Australia, BR = Brazil.

Models (Chassis and Standalone)

The x6010 models include Chassis (slide in card or SIC) and Standalone models. The Chassis models have a prefix of \underline{C} (e.g., C6010) and the Standalone models have a prefix of \underline{S} (e.g., S6010).

Chassis Models (C6010-xxxx) Standalone Models (S6010-xxxx) S6010-10XX (RJ48-1X9) C6010-10XX (RJ48-1X9) S6010-1040 (RJ48-SFP) C6010-1040 (RJ48-SFP) S6010-10XX (BNC2-SFP)

Figure 8: x6010 Models

C6010-3040 (BNC2-SFP)

The various x6010 NID models are described in the tables below.

Table 2: x6010 Models

Chassis Model	Copper Conn	Fiber Conn	Mode	Dis- tance (Km)	Transceiver TN#	Notes
C6010-1013	RJ-48	SC	MM	2	13222	TN#13535 with DMI
C6010-1014	RJ-48	SC	SM	20	13223	TN#13402 with DMI
C6010-1040	RJ-48	SFP	SM/MM	2/20	13344/13345	See Note *1
C6010-3040	BNC	SFP	SM/MM	2/20	13344/13345	See Note *1

Standalone Model	Copper Conn	Fiber Conn	Mode	Dis- tance (Km)	Transceiver TN#	Notes
S6010-1011	RJ-48	ST	MM	2	13221	TN#13536 with DMI
S6010-1013	RJ-48	SC	MM	2	13222	TN#13535 with DMI
S6010-1014	RJ-48	SC	SM	20	13223	TN#13402 with DMI
S6010-1040	RJ-48	SFP	SM/MM	2/20	13344/13345	See Note *1
S6010-3040	BNC (2)	SFP	SM/MM	2/20	13344/13345	See Note *1

Note *1: the module could be used on this card but is not included on standard models of this card.

Physical Specifications

The physical specifications for the Chassis and Standalone models are provided in the table below.

Table 3: Physical Specifications

Standards	ANSI T1.102, T1.402, T1.408; ITU I.431, G.703, G.736, G.775; G.823; ETSI 300-166, ETSI 300-233, TBR12/12		
Data Rates	T1 = 1.544 Mbps, E1 = 2.048 Mbps		
Copper Connectors	RJ-48, BNC		
Fiber Connectors	SFP: LC connector uses standard 100Base-X/OC-3 SFP Fixed Optics: ST or SC connector		
Dimensions	C6010: 1" x 3.3" x 6.1" (2.54 cm x 8.382 cm x 15.5 cm) HxWxD S6010: 0.9" x 3.4" x 6" (2.3 cm x 8.6 cm x 15.2 cm) HxWxD		
Power Supply	C6010: From ION chassis backplane (slide-in card) S6010: 7.5 to 15.9 VDC		
Power Consumption	2.6 Watts		
Environmental	Environment specs depend on the chassis chosen. See ION chassis specs. Operating: 0°C to +50°C (C6010) Operating: -10°C to +65°C (S6010) Humidity: 5% to 95% (non-condensing) Altitude: 0 – 10,000 ft.		
Shipping Weight	C6010: 1 lb (0.45 kg) S6010: 2 lbs. (0.90 kg)		
MTBF	With Power Supply: Greater than 41,660 hours (MIL-HDBD-217F) Greater than 114,580 hours (Bellcore) Without Power Supply: Greater than 250,000 hours (MIL-HDBD-217F) Greater than 687,000 hours (Bellcore)		
Compliance	CISPR/EN55022 Class A, FCC Class A, CE Mark, UL60950 (S6010)		
Warranty	Lifetime		

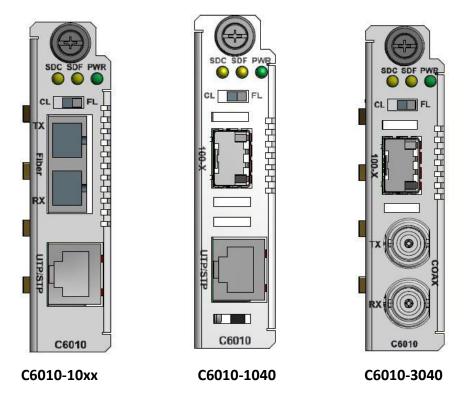
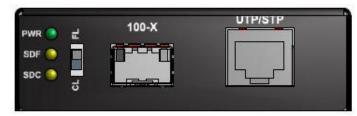
Connectors

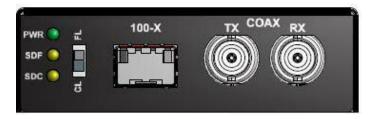
The x6010 connectors are described in the table below.

Table 4: x6010 Connector Descriptions

Connector Label	Description	
Fiber TX / RX	ST, SC or open SFP for fiber media connection.	
UTP / STP	RJ48 copper media connection for shielded twisted pair (STP) or unshielded twisted pair (UTP) media connection.	
100-X	PORT 2; open SFP for fiber media connection.	
COAX TX RX	PORT 1; Two BNC connectors for Coaxial cable ports connection. Coax is only supported on models with SFP.	

For fiber, coax, and copper cable specifications see "Appendix D: Cable Specifications" on page 252.


Figure 9: C6010 Front Panels

S6010-10xx

S6010-1040

S6010-3040

Figure 10: S6010 Front Panels

LED Descriptions

The x6010 LEDs are described below.

PWRPower (Green) on (lit) indicates x6010 power is on.

SDF Signal Detect on Fiber:

- Green, on indicates fiber link is up.
- Green, blinking indicates fiber link is in loopback mode.
- Yellow, on indicates AIS detected on fiber link.

The **SDF** LED when lit indicates fiber link is up. Flashing **SDF** LED (once/second) indicates transmitting on link if other link is down. Flashing **SDF** LED (5 times/second) indicates 'All Ones' detected on the fiber link.

SDC Signal Detect on Copper:

- Green, on (lit) indicates copper link is up.
- Green, blinking indicates copper link is in loopback mode.
- Yellow, on (lit) indicates AIS detected on copper link.

The **SDC** LED, when lit indicates twisted-pair copper link is up. Flashing SDC LED (once/second) indicates transmitting on link if other link is down. Flashing SDC LED (5 times/second) indicates All Ones detected on the Link.

Jumper Settings

The x6010 jumper settings are described below.

Jumper J8 - Configuration mode (HW / SW Mode): Jumper J8 defines the x6010 PCB's Hardware / Software mode setting.

- 1-2: Hardware mode; the x6010 configuration is controlled by hardware. Use the shorting plug to jumper (short) pins 1 and 2 for Hardware Mode.
- 2-3: Software mode; the x6010 configuration is controlled by software (default). Use the shorting plug to jumper (short) pins 2 and 3 for Software Mode.

The factory default setting is Software mode (pins 2 and 3 jumpered) as shown above. Note that in Hardware mode you cannot make x6010 configuration changes from the Web interface, as the screen fields are all grayed out. You can enter CLI commands with the x6010 in Hardware mode.

For more information, see "DIP Switches and Jumper Settings" on page 212.

DIP Switches

Several multi-position DIP switches allow the network administrator to configure the x6010 for network conditions. Use a small flat blade screwdriver or similar device to set these switches for site installation.

The x6010 DIP switches and jumpers are summarized below. The x6010 DIP switch settings are described below. For more information, see "DIP Switches and Jumper Settings" on page 212.

DIP Switch Locations

The S6010 DIP switch locations are shown below.

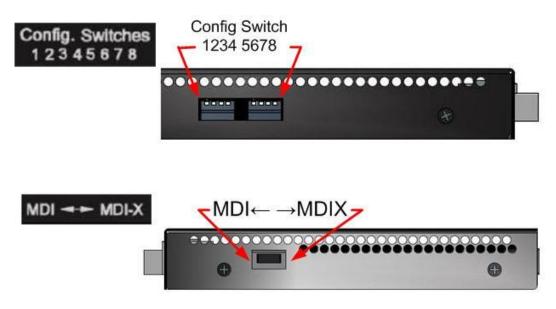


Figure 11: S6010 DIP Switches

The C6010 DIP switch and jumper locations are shown in the figure below.

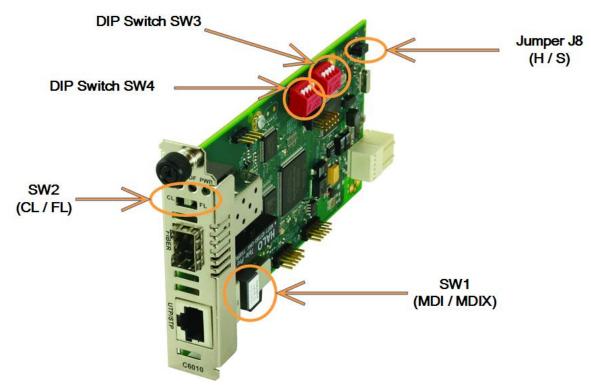


Figure 12: C6010 DIP Switches and Jumpers

DIP Switch Settings

The x6010 DIP switch settings are described below.

MDI ← → MDI-x Switch – DIP Switch SW1

Switch1 MDI/MDI-X selection for T1/E1 cable:

- MDI: Straight-Through cable.
- MDI-X: Crossover cable.

CL - FL Switch - DIP Switch SW2

Switch2 Copper/Fiber loopback:

- **CL**: Enable loopback on the local copper interface.
- (Center position): Normal operation (no loopback) (default).
- **FL**: Enable loopback on the local fiber interface.

Config Switch 12345678 - DIP Switch SW3 and SW4

Switch 3-1 Line configuration setting in T1 mode (see table below).

Switch 3-2 Line configuration setting in T1 mode (see table below).

Switch 3-3 Line configuration setting in T1 mode (see table below).

Switch 3-4 Inband loopback selection:

• Up: Disabled (default)

• Down: Enabled

Switch 4-1 TAOS on copper port:

• Up: Disabled (default)

• Down: Enabled

Switch 4-2 TAOS on fiber port:

• Up: Disabled (default)

• Down: Enabled

Switch 4-3 Long haul or short haul mode (only valid for T1 mode):

• Up: Short haul(default)

• Down: Long haul

Switch 4-4 T1/E1 mode selection:

• Up: T1 mode (default)

• Down: E1 mode (cable configuration is automatically set to 120 ohms)

SW4-4: up, SW4-3: up. T1/Short Haul (SW3-4 is not used in Short Haul mode):

SW3-1	SW3-2	SW3-3	DSX-1 Condition
Up	Up	Up	J1 Mode, 110 ohm cable (Optional)
Up	Up	Down	DSX-1, 162.5-200m,(533-655') 100 ohm cable
Up	Down	Up	DSX-1, 121.6-162.5m,(399-533') 100 ohm cable
Up	Down	Down	DSX-1, 81-121.6m,(266-399') 100 ohm cable
Down	Up	Up	DSX-1, 40.5-81m,(133-266') 100 ohm cable
Down	Up	Down	DSX-1, 0-40.5m,(0-133') 100 ohm cable
Down	Down	Х	Do Not Care

SW4-4: Up, SW4-3: Down. T1/ Long Haul (SW3-3, SW3-4 are not used in Long Haul mode):

SW3-1	SW3-2	DS-1 Condition
Up	Up	-22.5db 100ohm cable
Up	Down	-15.0db 100ohm cable
Down	Up	-7.5db 100ohm cable
Down	Down	0.0db 100ohm cable

See "Section 4: Configuration" on page 71 for more configuration information.

See "Appendix B: Factory Defaults" on page 249 for a summary of default and optional settings.

Documentation Conventions

The conventions used within this manual for commands/input entries are described in the table below.

Table 5: Documentation Conventions

Convention	Meaning		
Boldface text	Indicates the entry must be made as shown. For example: ipaddr= <addr> In the above, only ipaddr= must be entered exactly as you see it, including the equal sign (=).</addr>		
<>	Arrow brackets indicate a value that must be supplied by you. Do not enter the symbols < >. For example: ipaddr= <addr> In place of <addr> you must enter a valid IP address.</addr></addr>		
[]	Indicates an optional keyword or parameter. For example: go [s= <xx>] In the above, go must be entered, but s= does not have to be.</xx>		
{}	Indicates that a choice must be made between the items shown in the braces. The choices are separated by the symbol. For example: state={enable disable} Enter state=enable or state=disable.		
66 37	Indicates that the parameter must be entered in quotes. For example: time=<"value"> Enter time="20100115 13:15:00".		
>	Indicates a selection string. For example: Select File > Save. This means to first select/click File then select/click Save.		

Related Manuals and Online Help

A printed documentation card is shipped with each x6010 device. Context-sensitive Help screens, as well as cursor-over-help (COH) facilities are built into the Web interface. A substantial set of technical documents, white papers, case studies, etc. are available on the Transition Networks web site at https://www.transition.com/. Note that this manual provides links to third part web sites for which Transition Networks is not responsible.

Other ION system and related device manuals are listed below.

- ION System x6010 Managed T1/E1-to-Fiber NID User Guide, 33493 (this manual)
- 2. ION Management Module (IONMM) User Guide, 33457
- 3. ION System CLI Reference Manual, 33461
- 4. ION219-A 19-Slot Chassis Installation Guide, 33412
- 5. ION106-x Six Slot Chassis User Guide, 33658
- 6. IONPS-A-R1 Power Supply User Guide, 33614
- 7. IONPS-D-R1 Power Supply User Guide, 33707
- 8. SPS-2460-xx External Power Supply User's Guide, 33455
- 9. SFP manuals (product specific)
- 10. Release Notes (firmware version specific)

Note: Information in this document is subject to change without notice. All information was deemed accurate and complete at the time of publication. This manual documents the latest software/firmware version. While all screen examples may not display the latest version number, all of the descriptions and procedures reflect the latest software/firmware version, noted in the Revision History on page 2.

For More Information

Transition Networks has designed their full-featured products to include the most advanced features on the market today. Please use the following resources to learn more about these advanced features.

- ANSI T1.403-1999 Network and Customer Installation Interface info@ansi.org
- ITU-T Recommendations page.
- IEEE 802 Standards page
- Metro Ethernet Forum MEF Specifications page.
- IETF Request for Comments (RFC) page.
- The TIA (Telecommunications Industry Association) Standards page.

Section 2: Installation and System Setup

General

This section describes how to install the x6010 and the procedures to access and initially set up the x6010 through either a local serial interface (USB) or a remote Ethernet connection (Telnet session or Web interface).

Installing the Chassis Model (C6010)

The C6010 is a slide-in module that can only be installed in a Transition Networks ION chassis (ION001-x and ION219-x). For a complete list of ION platform products, go to the Transit Networks website at: https://www.transition.com/.

The following describes how to install the C6010 in the ION chassis.

Caution: Failure to wear a grounding device and observe electrostatic discharge precautions when installing the C6010 could result in damage or failure of the module.

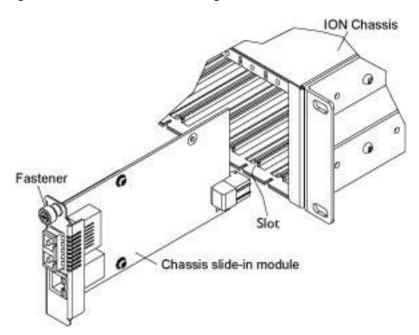


Figure 13: Chassis Installation

IMPORTANT

The C6010 slide-in-card is a "hot swappable" device and can be installed with chassis power on.

- 1. Locate an empty slot in the ION System chassis.
- 2. Grasp the edges of the C6010 card by its front panel.
- 3. Align the card with the upper and lower slot guides, and carefully insert the C6010 into the installation slot.
- 4. Firmly seat the card against the chassis back panel.
- 5. Push in and rotate clockwise the panel fastener screw to secure the card to the chassis (see Figure 13: Chassis Installation on the previous page).
- 6. Note that the C6010 card's Power LED lights. See Accessing the NIDs on page 39.

Installing the Standalone Model (S6010)

The standalone model (S6010) can be installed in any of the following ways.

- · Rack mounted
- Table top
- Wall mounted

Rack Mount Installation

The x6010 standalone module can be mounted into a Transition Networks E-MCR-05 media converter rack, which can be installed on a tabletop or in a standard site rack. For installation details, see the *E-MCR-05 Media Converter Rack User Guide*, 33392.

Tabletop Installation

The S6010 is shipped with four rubber feet for optional installation on a table or other flat, stable surface in a well-ventilated area.

- 1. Remove the rubber feet from the card.
- 2. On the bottom of the S6010, place one rubber foot in each corner of the S6010.

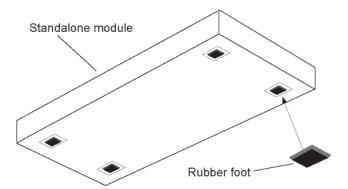


Figure 14: Tabletop Installation

3. Set the S6010 in place and connect the AC power adapter (see Connecting to AC Power on page 36).

Wall Mount Installation

1. Remove the four #4 Philips head screws securing the cover to the S6010 and orient the device as shown in the figure below.

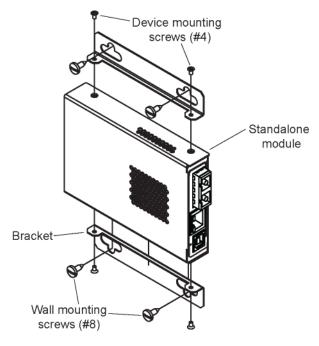
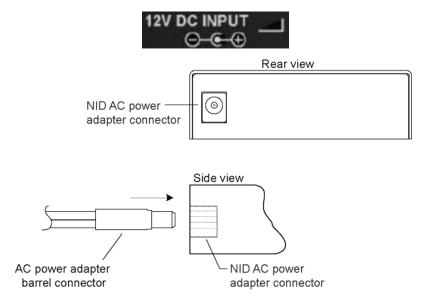


Figure 15: Wall Mount Installation

- 2. Mount one of the bracket assemblies to the S6010 using two of the #4 Philips head screws.
- 3. Mount the other bracket assembly to the other side of the S6010 using the other two #4 Philips head screws.
- 4. Position the S6010 on the mounting surface.
- 5. Use the four #8 screws to mount the bracket to the mounting surface.
- 6. Connect the AC power adapter (see Connecting to AC Power on page 36).


Connecting to AC Power

After the standalone S6010 has been installed, connect it to the supplied AC-DC power adapter as follows. Use the AC power adapter shipped with the S6010 (TN# SPS-2460-xx). See the related manual for specifics.

Warning: Risk of electrical shock.

1. Insert the barrel connector of the AC power adapter to the power inlet marked **12V DC INPUT** on the back of the standalone S6010.

Figure 16: AC Power Connection

2. Plug the AC power adapter plug into AC power at an appropriate AC outlet. Note that the standalone S6010 front Power (PWR) LED lights.

Installing SFPs

Some models allow you to install a Small Form-Factor Pluggable (SFP) device of your choice in order to make a fiber connection. The x61x0-1040 models have a single SFP port. The x61xx-x040 models have two SFP ports. See the SFP manual for cautions and warnings.

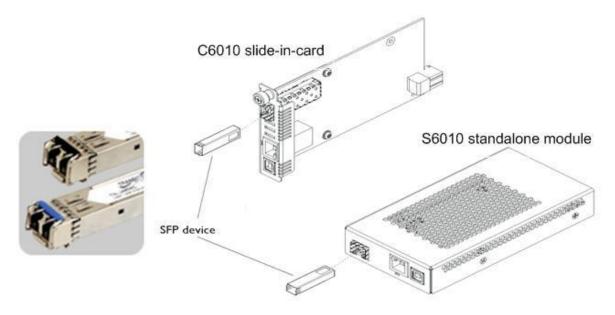


Figure 17: SFP Installation

- 1. Position the SFP device at either installation slot, with the label facing up (on the S6010) or to the right (on the C6010).
- 2. Carefully slide the SFP device into the slot, aligning it with the internal installation guides.
- 3. Ensure that the SFP device is firmly seated against the internal mating connector.
- 4. Connect the fiber cable to the fiber port connector of the SFP device.

Note: Make sure the SFP release latch is in the up (closed) position when you insert the cable connector into the SFP at the fiber port. (There should be a slight 'click' when connected.)

Connecting the C6010 to the S6010

Connect the C6010 to the S6010 using fiber ports. If two fiber lines are supported, connect the local and remote device's primary lines together, and then connect the secondary lines together.

Installing the USB Driver (Windows XP)

IMPORTANT

The following driver installation instructions are for the *Windows XP* operating system only. Installing the USB driver using another operating system is similar, but not necessarily identical to the following procedure.

To install the USB driver on a computer running Windows XP, do the following.

- 1. Extract the driver from the website and place it in an accessible folder on the local drive of the PC.
- 2. Connect the NID to the USB port on the PC.

Note: for slide-in modules installed in an ION Chassis, the USB connection will be made to the ION Management Module if one is installed in the chassis.

The Welcome to the Found New Hardware Wizard window displays.

- 3. Select No, not this time.
- 4. Click **Next**. The installation options window displays.
- 5. Select Install from a list or specific location (Advanced).
- 6. Click **Next**. The driver search installation options window displays.
- 7. Click **Browse**. Locate and select the USB driver downloaded in step 1 above.
- 8. Click Next. Driver installation begins.
- 9. When the finished installing screen displays, click Finish.

The USB driver installation is complete. You must now configure the COM port to be used by the terminal emulator.

Configuring HyperTerminal

After the USB driver has been installed, you must set up the terminal emulator software (e.g., HyperTerminal) to use the USB COM port.

- 1. On the desktop, right-click on My Computer.
- 2. Select Manage. The Computer Management window displays.
- 3. Click on **Device Manager** to open the Device Manager panel. (If a Device Manager message displays, click **OK** and continue.)
- 4. In the right panel, expand the list for Ports (COM & LPT).

Write down the USB COM port number for the "TNI CDC USB to UART" listing (e.g., COM5). You will need to provide this COM port number in step 8.

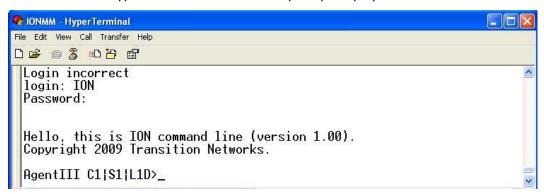
- 5. Launch the HyperTerminal software.
 - a) Click **Start**.
 - b) Select: All Programs > Accessories > Communications
 - c) Click **HyperTerminal**.

The Connection Description window displays.

- 6. Type in a name and select an icon that will be used for this connection.
- 7. Click **OK**. The **Connect To** window displays.
- 8. From the drop-down list in the Connect using field, select the COM port noted in step 4.
- 9. Click **OK**. The **Port Settings** window displays.
- 10. Set the COM port properties as follows:
 - Bits per second: **115200**
 - Data bits: 8
 - Parity: None
 - Stop bits: 1
 - Flow control: None
- 11. Click **OK**. A blank HyperTerm window displays.
- 12. In the HyperTerm window, select **File > Properties**. The Properties window displays the **Connect To** tab.
- 13. Click the **Settings** tab. The Settings tab displays.
- 14. In the **Emulation** field, select **VT100**.
- 15. Click the **ASCII Setup...** button. The ASCII Setup window displays.
- 16. Verify that **Wrap lines that exceed terminal width** checkbox is checked.
- 17. Click **OK**, and then click **OK** again.
- 18. Login (see Starting a USB Session below).

Starting a USB Session in HyperTerminal

The following describes the procedure to access the NID via a USB connection.


- 1. Start the terminal emulator program (e.g., HyperTerminal).
- 2. When the emulator screen displays, press **Enter**. The login prompt displays. If the login prompt does not display, try unplugging and re-plugging the USB cable at the IONMM.

Note: If your system uses a security protocol (e.g., RADIUS, etc.), you must enter the login and password required by that protocol.

- 3. Type your login (the default is **ION**). **Note:** the login is case sensitive.
- 4. Press **Enter**. The password prompt displays. **Note**: if a "Login incorrect" message displays, ignore it.

- 5. Type your password (the default is **private**). **Note:** the password is case sensitive.
- 6. Press **Enter**. The HyperTerminal command line prompt displays.

7. Enter a **go** command to change the location for the command prompt. The **go** command format is:

go [c=CHASSIS] [s=SLOT] [l1ap=PORT] [l2ap=PORT] (l1p=PORT|l2p=PORT|l3p=PORT|l1d|l2d|l3d)

8. Enter commands to set up the various configurations for the NID. For configuration information, see "Section 4: Configuration" on page 55. For a description of all available CLI commands see "Section 6: Command Line Interface (CLI) Reference" on page 111.

Note: If required by your organization's security policies and procedures, use the CLI command **set community write=<xx>** to change the default password. For a description of all available CLI commands see "Section 6: Command Line Interface (CLI) Reference" on page 111.

Terminating a USB Connection from HyperTerminal

To terminate the USB connection, do the following.

- 1. At the command prompt, type quit.
- 2. Press Enter.
- 3. Click Call > Disconnect.
- 4. Click File > Exit.

Accessing the NIDs

The x6010 NIDs can be accessed through either a local serial interface via a USB connection or through an Ethernet network connection. The network connection can be done via a Telnet session or a Web graphical user interface (GUI).

Access via Local Serial Interface (USB)

The x6010 NIDs can be connected to a local management station (PC) through a serial interface using a USB connection. The NID is controlled by entering command line interface (CLI) commands at the local management station. To use the serial interface (USB) the following is required:

- Personal computer (PC)
- USB cable (type A male connector on one end and type B male connector on the other)
- Terminal emulator program (e.g., HyperTerminal) on the PC
- USB driver installed on the PC
- Configured COM port

IMPORTANT

In order to control the chassis slide-in module through a USB serial interface, the command line prompt must be showing the location of the module to be managed.

Operating Systems Supported

The following USB drivers are available at the Transition Networks **ION Products page**.

Windows® 7	Windows 7 x64	Windows XP® 32 bit
Windows 2000	Windows 2003 32 bit	Windows Vista [®]
Windows Vista x64	Windows 8 and 8.1	Windows 10

Virtual COM port (VCP) drivers make the USB device appear as an additional COM port available to the PC. Application software can access the USB device in the same way as it would access a standard COM port.

Access via an Ethernet Network

The NID can be managed remotely through the Ethernet network via either a Telnet session or the Web interface. Before this is possible, you must set up the IP configuration for the x6010.

Starting a Telnet Session

The x6010 can be controlled from a remote management station via a Telnet session over an Ethernet connection. The x6010 is controlled and configured through CLI commands. Use the following procedure to connect to and access the x6010via a Telnet session.

- 1. Click Start.
- 2. Select All Programs>Accessories.
- 3. Click **Command Prompt**. The command prompt window displays.
- 4. At the command line type: **telnet** <xx> where:
 - xx = IP address of the x6010
- 5. Press **Enter**. The login prompt displays. **Note**: If your systems uses a security protocol (e.g., RADIUS, etc.), enter the login and password required by that protocol.
- Type your login (the default is ION). Note: the login is case sensitive all upper case).
- 7. Press Enter. The password prompt displays.
- 8. Type your password (the default is **private**). The password is case sensitive all lower case.
- 9. Press Enter. The command line prompt displays.
- 10. Enter a **go** command to change the location for the command prompt. The format is: go [c=CHASSIS] [s=SLOT] [l1ap=PORT] [l2ap=PORT] (l1p=PORT|l2p=PORT|l3p=PORT|l1d|l2d|l3d)
- 11. Press the **Enter** key.
- 12. Enter commands to set up the various configurations for the NID. For configuration information, see Section 4: "Configuration" on page 55. For a description of all available CLI commands see "Section 6: Command Line Interface (CLI) Reference" on page 111.

Note: If required by your organization's security policies and procedures, use the CLI command **set community write=<xx>** to change the default password. See "Section 6: Command Line Interface (CLI) Reference" on page 111.

Terminating a Telnet Session

To terminate the Telnet session:

- 1. Type quit.
- 2. Press the **Enter** key.

Web Browsers Supported

The ION system supports current versions of most popular web browsers (e.g., Mozilla Firefox, Internet Explorer, Google Chrome).

Starting the Web Interface

The NID can be controlled and configured from a remote management station via a Web graphical user interface (GUI) over an Ethernet connection. Information is entered into fields on the various screens of the interface. **Note:** fields that have a grey background cannot be modified.

A Web session can be used to connect to and set up the x6010.

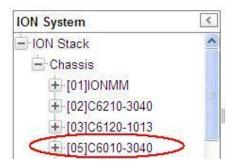
IMPORTANT

- Do not use the browser's back button to navigate screens it causes the web connection to drop.
- Do not use the keyboard back space key in grayed out fields. This causes the web connection to drop.

To sign in to the NID via the Web, do the following.

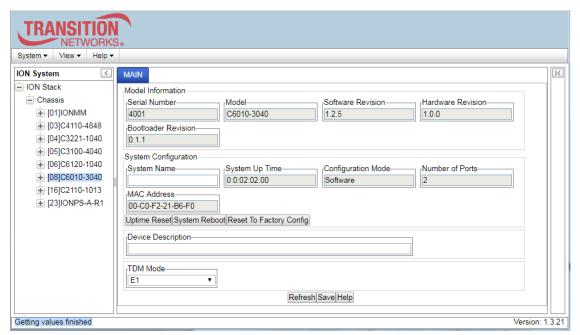
- 1. Open a web browser.
- 2. In the address (URL) block, type the IP address of the NID (the default address is 192.168.0.10).

3. Click **Go** or press **Enter**. The ION System sign in screen displays.


Note: If your systems uses a security protocol (e.g., RADIUS, etc.), you must enter the login and password required by that protocol.

4. Type the User Name (the default is **ION**). **Note:** the System name is case sensitive - all upper case.

- 5. Type the Password (the default is **private**). **Note:** the password is case sensitive all lower case.
- 6. Click **Sign in** or press **Enter**. The opening screen displays the ION System / ION Stack.



- 7. Click the plus sign [+] next to ION Stack. This unfolds "ION Stack" node in the left tree view and will refresh device status.
- 8. Click the plus sign [+] next to Chassis to unfold the chassis devices.

9. Select the appropriate NID. The **MAIN** screen displays for the selected NID.

The Model C6010-1040 MAIN tab screen is shown below.

10. You can use the various tabs to configure the system, devices and ports. For configuration information, see "Section 4: Configuration" on page 65.

Note: If required, use the **set community** CLI command to change the default password according to your organization's security policies and procedures.

Terminating the Web Interface (Sign Out)

To sign out from the Web interface, in the upper left:

- 1. Click **System** ▼. The **Sign out** selection drops down.
- 2. Click Sign out.

The sign in screen displays.

Note: The x6010 does not automatically sign out upon exit or after a timeout period, which could leave it vulnerable if left unattended. Follow your organizational policy on when to log out.

Initialization (Default) Configuration

The x6010 assumes the following operating characteristics on initial startup. These are the default initialization parameter values for the x6010. See Appendix B: Factory Defaults on page 249 for a summary of all of the default settings.

Parameter	Property	Default Value
T1/E1 Model	Read only	T1
Configuration Mode	Read only	SW
Fiber Port		
• Link	Read only	Down
Transmit All Ones	Read & Write	Enabled
Alarm Indication Signal	Read only	Normal
Loopback	Read & Write	Disabled
Copper Port		
• Link	Read only	Down
Transmit All Ones	Read & Write	Enabled
Alarm Indication Signal	Read only	Normal
Loopback	Read & Write	Disabled
Long Haul	Read only	No

See Section 4: Configuration on page 59 for the procedures used to change these default settings.

Section 3: Management Methods

General

The x6010 NIDs are managed through the IONMM using one of the following methods.

- Simple Network Management Protocol (SNMP) both public and private Management Information Bases (MIBs) allowing for a user to easily integrate and manage the ION platform with an SNMP based network management system (NMS).
- Telnet session uses a command line interface (CLI) to access and control the IONMM via the network.
- Universal Serial Bus (USB) uses a CLI to access and control the IONMM through a locally connected workstation.
- Web-browser access and control the IONMM using a standard web browser and a graphical user interface (GUI).

The x6010 NIDs cannot be remotely managed directly (i.e., only through IONMM).

IONMM Managed x6010

NIDS that are managed through the IONMM are either chassis resident (C6010) or standalone modules (S6010) that are connected as remotes to chassis resident modules. Communications between the IONMM and each x6010 is through the ION Chassis backplane.

You can manage and configure the x6010 via the CLI or the Web interface.

Managing Slide-In and Remote Modules Using CLI Commands

Management of modules other than the IONMM can be accomplished by entering CLI commands through either the local USB serial interface or a remote Telnet session. CLI commands can operate on the device level or port level. This is indicated by the status of the command prompt's preamble.

For example:

AgentIII C1|S1|L1D>

or just:

C1|S1|L1D>

This prompt indicates that any subsequent commands entered are for the module located in chassis 1/slot1. In order to enter a command for a different device or port in the ION system, you must change the location of the command prompt. The **go** command lets you change the hierarchical location of the command prompt. Before using the command, a familiarity with the hierarchy structure in the ION system is essential.

The ION system hierarchy is shown in the figure below.

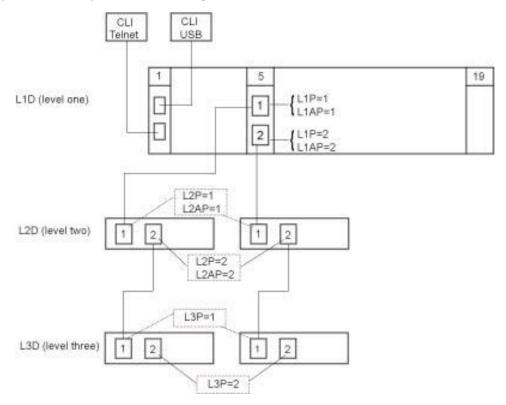


Figure 18: CLI Location Hierarchy

In the above figure, there are three levels of devices:

- L1D (level one device) refers to devices (IONMM and other NIDs) that are installed in the chassis.
- L2D (level two device) refers to a device that is directly connected to a port in a NID in the chassis and has other devices connected to it.
- L3D (level three device) refers to a device that is directly connected to a port in a level one device.

The ports on a device are divided into two categories: Device ports and Attachment ports.

- Device ports These are ports on a specified device that are used as service ports for either customer or network connections, and are typically attached to routers or switches. These ports are labeled L1P=, L2P= and L3P=. The L1, L2, and L3 indicate the level of the device that the port is on. Devices attached to a port with this designation **cannot** be managed by the IONMM.
- Attachment port These are also ports on a specified device; they are labeled L1AP= and L2AP= and indicate an attachment point for another ION family device that can be managed by the IONMM.

Physically these are the same port. That is, L1P1 and L1AP1 are both port one on a level one device. However, it is how they are used that determines their syntax. For example, L1P1 indicates that the port is used to connect to a service device that is not managed by the IONMM. L1AP1 (level 1 attachment

port 1) indicates that the port is used to connect to a level two device that can be managed by the IONMM.

Example 1

In the CLI location hierarchy, to go to the first port (L3P1) on device L3D in the network topology shown in Figure 20, you would enter the following command from the base prompt.

The resulting command line prompt would be:

Any CLI command appropriate for the port can now be entered.

Example 2

In the CLI location hierarchy, to go to device L2D in the network topology shown in Figure 19, you would enter the following command from the base prompt.

The resulting command line prompt would be:

Any CLI command appropriate for the device can now be entered.

The following describes the procedure for using CLI commands to manage the NIDs.

- 1. Access the NID through either a USB connection (see "Starting a USB Session" on page 41) or a Telnet session (see "Starting a Telnet Session" on page 43).
- 2. Use the **go** command to change the operational location to the device/port to be managed. The **go** command format is:

```
go [c=CHASSIS] [s=SLOT] [l1ap=PORT] [l2ap=PORT] (l1p=PORT|l2p=PORT|l3p=PORT|l1d|l2d|l3d)
```

- 3. Configure the NID using the appropriate commands. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 4. To return the location to the IONMM, type **home** and press **Enter**.

Note: Use the **stat** command to display the current ION chassis/card/port/remote device configuration.

```
AgentIII C1|S1|L1D>stat
ION statck
        Chassis -- BPC
                [ 1] IONMM
                        Port 1
                        Port 2
                [ 2] C6210-3040
                        Port 1
                        Port 2
                [ 3] C6120-1013
                        Port 1
                        Port 2
                        Port 3
                        Port 4
                        Port 5
                        Port 6
                [ 5] C6010-3040
                        Port 1
                        Port 2
                                level2 REM: S6010-1040
                                        Port 1
                                        Port 2
```

For more information, see the Status check (**stat**) command in "Section 6: Command Line Interface (CLI) Reference" on page 125.

To switch command control from the local slot 4 C6010-3040 to its level 2 remotely-connected device (S6010-1040) in the **stat** command example above, you would enter:

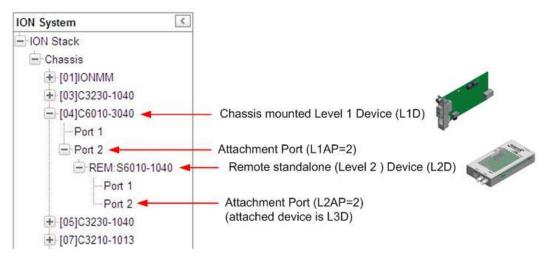
```
C1|S4|L1D>go c=1 s=4 l1ap=2 l2d
```

Command control would be shown by the command line prompt:

```
C1|S4|L1AP2|L2D>
```

To switch command control to port 1 of the level2 REM: S6010-1040 above, you would enter:

```
C1|S4|L1AP2|L2D>go 12p=1
```


Command control would be shown by the command line prompt:

```
C1|S4|L1AP2|L2P1>
```

Managing Slide-In and Remote Modules via the Web Interface

1. Access the NID through the Web interface (see "Starting the Web Interface" on page 45).

2. Click on the slide-in module or port to be managed.

- 3. Click on the [+] for a particular device and click on the port to be managed.
- 4. The operations that can be performed depend on the type of device or port selected. Refer to the specific product documentation for other device information. See the "Related Manuals" section on page 38.

Managing Standalone Modules Using CLI Commands

Management of standalone modules can be accomplished by entering CLI commands through either the local USB serial interface or a remote Telnet session. CLI commands can operate on the device level or port level. This is indicated by the status of the command prompt's preamble.

For example:

```
AgentIII C1|S5|L1D>
```

or just:

```
C1|S5|L1D>
```

This prompt indicates that any subsequent commands entered are for the device instead of a port. In order to enter a command for a port, you must change the location of the command prompt. The **go** command allows you to change the hierarchical location of the command prompt.

The **go** command format is:

```
go [c=CHASSIS] [s=SLOT] [l1ap=PORT] [l2ap=PORT] (l1p=PORT|l2p=PORT|l3p=PORT|l1d|l2d|l3d)
```

For example:

In the CLI location hierarchy, to go to port 1 on a device, you would enter the following command from the base prompt:

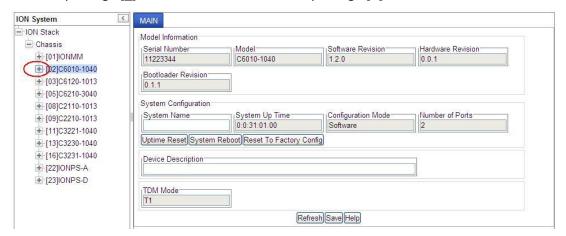
```
C1|S5|L1D>go l1p=1
```

The resulting command line prompt would be:

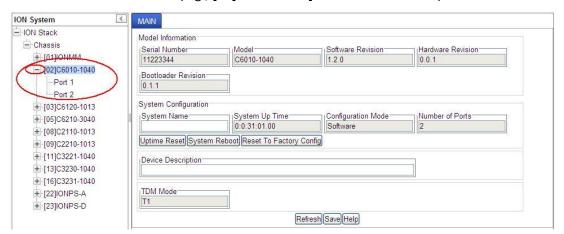
```
C1|S5|L1P1>
```

Any CLI command appropriate for the port can now be entered.

Subsequently, to return to the device level, you would enter the following:

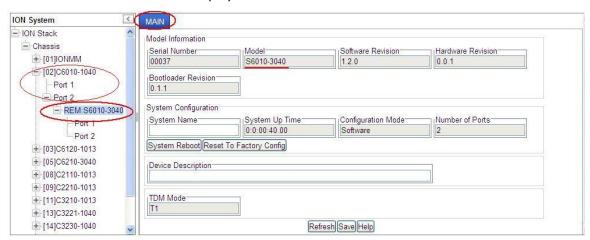

```
C1|S5|L1P1>go l1d
```

The resulting command line prompt would be:


C1|S5|L1D>

Managing Standalone Modules via the IONMM Web Interface

- 1. Access the x6010 through the Web interface (see "Starting the Web Interface" on page 45).
- 2. Click the plus sign [+] next to **ION Stack** to unfold the "**ION Stack**" node in the left tree view if not already done.
- 3. Click the plus sign [+] next to **Chassis** and click the plus sign [+] next to a module.



4. Click on the desired module (e.g., [04]C6010-3040] on the screen above).

5. Click on the [+] next to the attachment port to be managed (Port 2 above).

The remote device's MAIN tab displays.

- 6. Click on the [+] next to the remote device to be managed (REM:S6010-3040 above).
- 7. Select the various ports / fields to perform the desired operations.

Menu Descriptions

This section describes the ION Web interface in terms of its system-level, device-level, and port-level menus. Note that menus and tabs vary slightly by model.

System-Level Menus

The table below describes the ION Web interface in terms of its system-level pane, dropdowns, tabs and sub-tabs. Note that menus and tabs vary slightly by model.

Table 6: System-Level Menu Description

Dropdown / Tab	Description
ION System pane	Stack - consists of one to many chassis or one standalone. The Stack Members table lists the Stack's chassis and its type. Chassis - the ION System family of products, multiple chassis may be connected together via Inter-Chassis Interface cables and managed by a single ION System SNMP Agent. The Chassis View shows a summary view of one such chassis. Model Information includes: * Serial Number - The serial number of the chassis itself. Individual NIDs also have their own serial numbers. * Model Name - The exact model name of this device. When contacting Technical Support, please be sure to give this name rather than the less specific Catalog number. * Software, Revision, and Bootloader Revision. * Chassis Members table - lists local physical components in slots 1 to 19. Device – provides tabs and sub-tabs for the IONMM and NIDs in the ION system. Port - provides tabs and sub-tabs for the IONMM or a selected NID port.
System Dropdown	Sign out.
View Dropdown	Refresh.
Help Dropdown	Online Help, ION Product Home Page, About ION System Web Interface.

Device-Level Menus

The table below describes the ION Web interface in terms of its device-level pane, dropdowns, tabs and sub-tabs. Note that menus and tabs vary slightly by model.

Tab	Description
MAIN Tab	Sections: Model Information, System Configuration, Device Description, and TDM Mode sections.
WAIN Tab	Buttons: Uptime Reset, System Reboot, and Reset to Factory Config. Refresh, Save, and Help.

Port-Level Menus

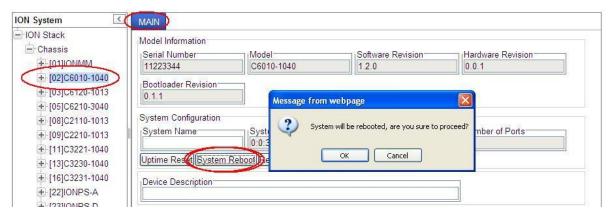
The table below describes the ION Web interface in terms of its port-level tabs and sub-tabs.

Table 7: Port-Level Menu Description

Tab	Description
MAIN Tab	Sections: Circuit ID, Port Configuration, and Loopback Management. Port 1 Fields: Link Status, AIS Transmit, Transmit All Ones, Alarm Indication Signal, Long Haul, Line Build Out, Connector Type, Loopback Type, Loopback Status. Port 2 Fields: Link Status, AIS Transmit, Transmit All Ones, Alarm Indication Signal, Connector Type, Loopback Type, Loopback Status. Buttons: <i>Refresh, Save, Start, Stop,</i> and <i>Help.</i>
DMI Tab (Port 2 only)	Sections: Interface Characteristics, Diagnostic Monitoring, Supported Media Length. The DMI (Diagnostic Maintenance Interface) function displays NID diagnostic and maintenance information such as interface characteristics, diagnostic monitoring parameters, and supported media lengths. See "DMI (Diagnostic Maintenance Interface) Parameters" on page 248 for more information. Note: not all NID or SFP models support DMI. If you click the DMI tab on a NID model that does not support DMI, the message "The DMI feature is not supported on current port."

Reboot, Reset, and Power Off Function Notes

Certain functions such as a System Reboot, Reset to Factory Configuration, Reset Power to a Slot, and Power Off a Slot) cause the system to delete certain stored files. *Caution*: In some circumstances, these stored files are lost unless you first perform a System Backup. See the "Backup and Restore Operations" section starting on page 86 for information on how to save the stored files from deletion.


For more information on how the Reboot, Reset, and Power Off functions impact stored files, see:

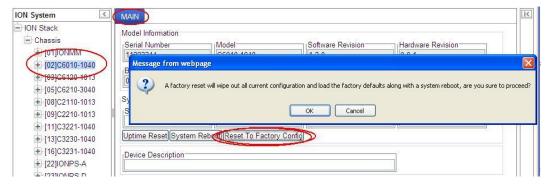
- Table 17. Back Up and Restore File Content and Location on page 88
- Table 18. File Status after a Reset to Factory Defaults on page 90
- Table 19. File Content and Location after a System Reboot on page 95
- Table 20. File Content and Location after a Firmware Upgrade on page 108

Doing a reboot, restart or upgrade of the IONMM, a power restart of the chassis, or a reset to factory removes temporary files (e.g. configuration backup files, Syslog file). A Factory Reset also removes the permanent settings (e.g. configuration files, HTTPS certification file, SSH key).

System Reboot

Clicking the **System Reboot** button resets all system states and reinitializes the system; all configuration data is saved during a restart.

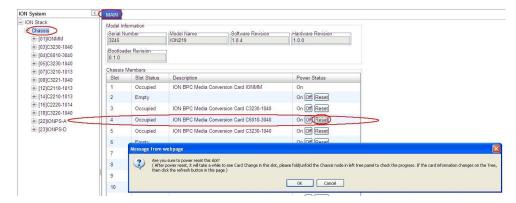
Press the **Cancel** button if you are not sure you want a system reboot to occur.


Press the **OK** button to clear the webpage message and begin the reboot process. The message "Loading, please wait... displays.

Note that a System Reboot can take several minutes.

Reset To Factory Config

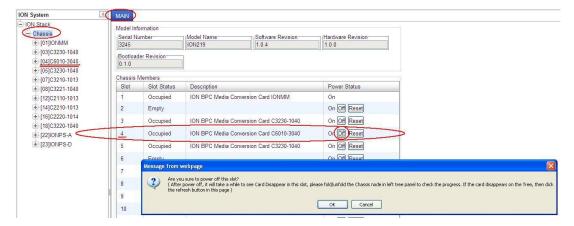
Clicking the **Reset To Factory Config** button resets the entire system configuration to the state it was in when it shipped from the factory. This permanently removes all current configuration details and loads the system configuration with the factory default settings.


The message "A factory reset will wipe out all current configuration and load the factory defaults along with a system reboot; are you sure to proceed?" displays.

You should only click **OK** if you wish to reboot. Otherwise, click **Cancel** if you are not sure you want a factory reset / reboot to occur.

Reset Power to a Slot

The x6010 provides two Reset functions: a software reset and hardware reset. At the **Chassis** > **MAIN** tab, you can click the **Reset** button to reset power for a specific slot in the chassis. The message "Are you sure to power reset this slot?" displays.



After power reset it will take a while to see card change in this slot; fold/unfold the Chassis node in the tree panel to check the progress. If the card information changes on the Tree, then click the **Refresh** button on this page.

If you are <u>not</u> sure that you want to reset this chassis, click the **Cancel** button to clear the message and return to normal operations without resetting power to this slot.

Power Off a Slot

At the **Chassis** > **MAIN** tab, you can click the **Off** button to remove power to a specific slot in the chassis. The message "Are you sure to power off this slot?" displays.

If you are <u>not</u> sure that you want to power off this slot, click the **Cancel** button to clear the message and return to normal operations without resetting power to this slot.

After power off, it will take a while for the card to disappear from this slot. Fold and then unfold the Chassis node in the left tree panel to check the progress. If the card information changes on the Tree, then click the **Refresh** button on this page.

Section 4: Configuration

General

After the NID has been installed and access has been established, the device and its ports must be configured to operate within your network. The configuration establishes operating characteristics of the device and the ports associated with the NID.

Configurations can be done either by entering CLI commands (USB / Telnet) or through a Web interface. For complete descriptions of all CLI commands, see "Section 6: Command Line Interface (CLI) Reference" on page 124.

The operating characteristics that can be defined for the NID are:

- · System setup
- Features
 - Interface (AIS, TDM, Loopback modes)
- Security

Note: Transition Networks recommends as a "best practice" to back up each SIC card's configuration after it is fully configured so that in the event of an error or hardware failure, the configuration can be easily and rapidly restored.

33493 Rev. E <u>www.transition.com/</u> Page 59 of 299

System Configuration

The system configuration defines a name for the NID, and (optionally) a Device Description.

The system configuration can be defined via the CLI or the Web interface.

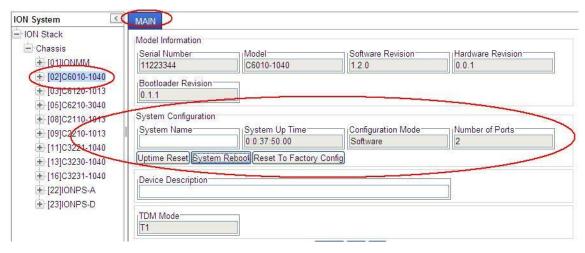
System Configuration - CLI Method

The system information can be alphabetic, numeric or a combination. See "Section 6: Command Line Interface (CLI) Reference" on page 127 for individual CLI command details.

- 1. Set the x6010 DIP switches and jumpers for your environment. See "Jumper Settings" on page 31 and "DIP Switch Settings" on page 33.
- 2. Access the NID through either a USB connection (see "Starting a USB Session" on page 41) or a Telnet session (see "Starting a Telnet Session" on page 43).
- 3. Type **set system name**=NAME, where NAME is the new system name, and press **Enter**. For example:

```
AgentIII C1|S5|L1D>set system name=C6010-3040
```

4. Verify the new system definition. Type **show card info** and press **Enter**. For example:


```
AgentIII C1|S5|L1D>show card info
System name: C6010-3040
Uptime: 21:03:26
Port number: 2
Serial number: 12345678
Config mode: software
Software: 1.2.5
Bootloader: 0.1.1
Hardware: 1.0.0
Agent III C1|S2|L1D>
```

Note: the **show card info** command does not function for a Power Supply module.

T1 System Configuration – Web Method

1. Set the x6010 DIP switches and jumpers for your environment. See "Jumper Settings" on page 31 and "DIP Switch Settings" on page 33.

- 2. Access the x6010 via the Web interface (see "Starting the Web Interface" on page 45).
- 3. Locate the **System Configuration** section.

- 4. In the **System Name** field, enter the name and for the x6010 device. The name can be alphabetic, numeric or a combination. Do <u>not</u> enter spaces in the **System Name** field.
- 5. Enter a **Device Description** of up to 64 characters, as required.
- 6. Scroll to the bottom and click Save.
- 7. Verify the device-level configuration settings:

Serial Number – e.g., 12345678 (read only field).

Model – e.g., C6010-3040 (read only field).

Software Revision – e.g., 1.2.5 (read only field).

Hardware Revision - e.g., 0.0.1 (read only field).

Bootloader Revision - e.g., 0.1.1 (read only field).

System Name – e.g., C6010-3040 (read/write field).

System Up Time: e.g., 5:5:59:26.00 (read only field).

Configuration Mode: Hardware or Software (read only field).

Number of Ports: e.g., 2 (read only field).

Device Description: blank or as entered (read/write field).

TDM Mode: e.g., T1 or E1 (dropdown)

T1 Ports Configuration

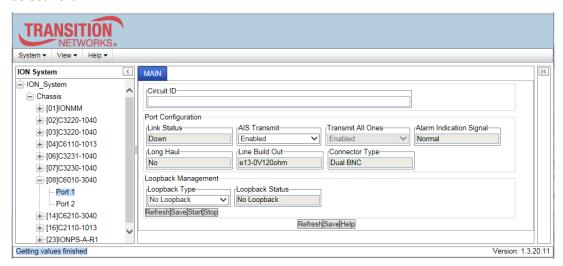
The x60xx ports configuration sets Port 1 and Port 2 Circuit ID, AIS Transmit and TDM Loopback type. You can configure the x60xx ports via the CLI or the Web interface.

T1 Ports Configuration – CLI Method

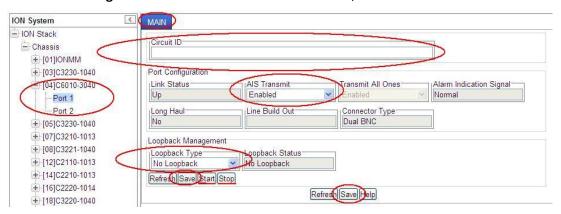
The port information can be alphabetic, numeric or a combination. See "Section 6: Command Line Interface (CLI) Reference" on page 127 for individual CLI command details.

- 1. Access the x60xx through either a USB connection (see "Starting a USB Session" on page 41) or a Telnet session (see "Starting a Telnet Session" on page 43).
- 2. Configure the Port 1 Circuit ID. At the command prompt type **set circuit-ID=xx** (up to 64 alphanumeric characters) and press **Enter**.
- 3. Configure the Port 1 Loopback Type. Type set tdm loopback type=phylayer and press Enter.
- 4. Use the **go** command to switch to Port 2.
- 5. Repeat steps 2-3 above to configure the Port 2 Circuit ID, AIS Transmit, and Loopback Type.
- 6. Configure the Port 2 DMI function (optional if supported). See "DMI (Diagnostic Maintenance Interface) Test" on page 198 for more information.
- 7. Click the **Save** button when done. For example:

```
AgentIII C1|S5|L1P1>set ais transmit=enable
AgentIII C1|S5|L1P1>set tdm loopback type=phylayer
AgentIII C1|S5|L1P1>go l1p=2
AgentIII C1|S5|L1P2>set ais transmit=enable
AgentIII C1|S5|L1P2>set tdm loopback type=phylayer
```


10. Verify each port's configuration. For example:

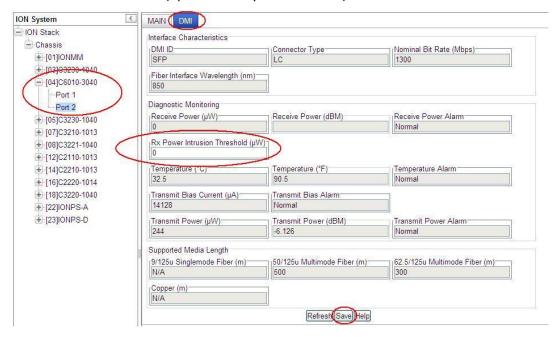
```
AgentIII C1|S5|L1D>go l1p=1
AgentIII C1|S5|L1P1>show tdm port config
link oper status:
                                                         up
alarm indication signal:
                                                         normal
taos transmit:
                                                         enabled
longhaul:
                                                         nο
lbo status:
                                                         unknown
                                                         Dual BNC
connector:
AgentIII C1|S5|L1P1>go l1p=2
AgentIII C1|S5|L1P2>show tdm port config
link oper status:
                                                         up
alarm indication signal:
                                                         alarm
taos transmit:
                                                         enabled
connector:
                                                         SFP Slot
AgentIII C1|S5|L1P2>
```


T1 Ports Configuration – Web Method

1. Access the NID through the Web interface (see "Starting the Web Interface" on page 45).

2. Select Port 1.

- In the Port 1 MAIN tab, in the Circuit ID field, enter up to 64 alphanumeric characters as required.
- 4. In the Port Configuration section in the AIS Transmit field, select Enabled or Disabled.



- 5. In the **Loopback Management** section in the **Loopback Type** field, select No **Loopback** or **PHY Layer**. See "Ports Loopback Test" on page 78 for the PHY layer loopback test procedure.
- 6. Click the Save button when done.

7. Select Port 2.

- 8. At the Port 2 **MAIN** tab, in the **Circuit ID** field, enter up to 64 alphanumeric characters as required.
- 9. In the AIS Transmit field, select Enabled or Disabled.
- 10. In the Loopback Type field, select No Loopback or PHY Layer.
- 11. Click the Save button when done.
- 12. Select the Port 2 **DMI** tab (optional only if DMI is used).

- 13. Set the Rx Power Intrusion Threshold (0-65535 μ W). The default is 0 μ W.
- 14. Click the **Refresh** button and verify the DMI status. See "DMI (Diagnostic Maintenance Interface) Test" on page 198 for more information.
- 15. Click the Save button when done.
- 16. Verify the C6010 Port 1 (copper port) configuration settings:Circuit ID either blank or the information entered earlier displays (read/write field).

Link Status – either **Down** or **Up** displayed (read only field).

AlS Transmit – Select All Ones or Blue on the Port 1 copper interface as an error signal when the copper interface is down. When this error signal is transmitted, the AlS of the device on the other end is activated, if supported (read/write field).

Transmit All Ones - Transmit AlS (All Ones:1111... sequence / BLUE:0101... sequence) on the Port 1 copper interface as an error signal for the DS3/E3/STS-1 port.

Alarm Indication Signal - When "*Alarm*" displays, this means that the other end has TAOS enabled and is currently transmitting an alarm condition. When "*Normal*" displays, this means no alarm (read only field).

Long Haul - This variable indicates the current position of the remote device's Short/Long haul configuration switch (read only field).

TDM Mode - This variable indicates the type of the current device. T1=1.544MHz; E1=2.048MHz; E3=34.4Mb/s; DS3 = 44.7Mbps; STS-1 = 51.8Mbps.

Line Build Out - The characteristics of the x6010's copper interface (read only field) as defined by DIP switch. An x60xx with Coax interface works in E1 mode only; in this mode the Line Build Out is e12-37V75ohms.

Connector Type – Dual BNC, etc. - model dependent (read only field).

Loopback Type – either "No Loopback" or "PHY layer" loopback displayed.

Loopback Status – either "Local In Loopback" or "No Loopback" displayed.

17. Verify the C6010 Port 2 (fiber port) configuration settings:

Circuit ID – either blank or the information entered earlier displays.

Link Status – either **Down** or **Up** displayed (read only field).

AIS Transmit – Select All Ones or Blue on the Port 2 fiber interface as an error signal when the Port 2 fiber interface is down. When this error signal is transmitted, the AIS of the device on the other end is activated, if supported (read/write field).

Transmit All Ones - Transmit AlS (All Ones:1111... sequence / BLUE:0101... sequence) on the Port 2 fiber interface as an error signal for the DS3/E3/STS-1 port (read only field).

Alarm Indication Signal - When "**Alarm**" displays, this means that the other end has TAOS enabled and is currently transmitting an alarm condition. When "**Normal**" displays, this means no alarm (read only field).

Connector Type -SFP Slot, etc. - model dependent (read only field).

Loopback Type – either "No Loopback" or "PHY layer" loopback displayed (read/write field).

Loopback Status – either "**Local In Loopback**" or "**No Loopback**" displayed.

Rx Power Intrusion Threshold - from 0-65535 μW. The default is 0 uW. (DMI tab)

Port Loopback Tests

Each port lets you configure, start, and stop a PHY Layer local loopback test and display status. Note that you can run just one port's loopback test at a time.

With the x60xx in Hardware mode, just set the x60xx front panel CL - FL switch to the CL (copper loopback mode) position to start and stop the loopback test.

In SW mode, the front panel **CL- FL** switch position is ignored. You can run the port loopback test via either the CLI or the Web interface.

Port Loopback Test - CLI Method

- 1. Access the x60xx through either a USB connection (see "Starting a USB Session" on page 41) or a Telnet session (see "Starting a Telnet Session" on page 43).
- 2. At the x60xx CLI command prompt, use the **go** command to switch to Port 1. Type **go c1 s x l1p=1** and press **Enter** (where x is the slot where the x6010 is located in the ION chassis). To control S6010 loopback, type **go c1 s x l1ap=2 l2p=1** and press **Enter**.
- 3. Set the TDM Loopback type to PHY layer. Type set tdm loopback type=phylayer and press Enter.
- 4. Start the Port 1 Loopback operation. Type set tdm loopback oper=init and press Enter.
- 5. Stop the Port 1 Loopback operation. Type set tdm loopback oper=stop and press Enter.
- 6. Set the x6010 front panel **CL FL** switch to the **FL** (Fiber Loopback mode) position.
- 7. Use the **go** command to switch to Port 2.
- 8. Repeat steps 1-5 above for Port 2. For example:

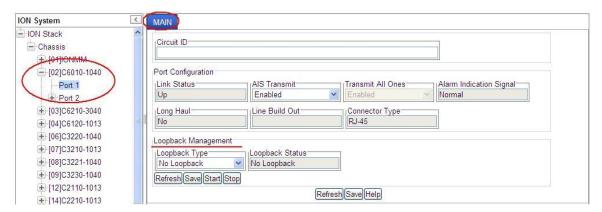
```
C1|S4|L1P2>set tdm loopback type phylayer
C1|S4|L1P2>set tdm loopback oper init
C1|S4|L1P2>set tdm loopback oper stop
C1|S4|L1P2>show tdm loopback capability
Loopback capability: phyLayer
C1|S4|L1P2>show tdm loopback state
Loopback type: phylayer
Loopback state: noLoopback
```

9. Use the **show tdm config** command to display and verify the device-level TDM configuration:

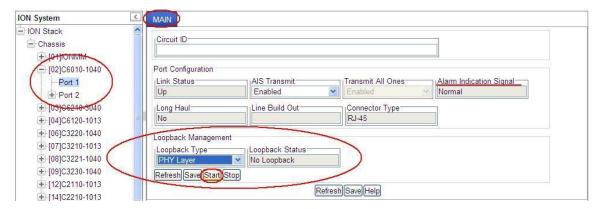
```
C1|S4|L1D>show tdm config
tdm type: t1
```

10. Use the **show tdm port config** command to display and verify the port-level TDM configuration for each port.

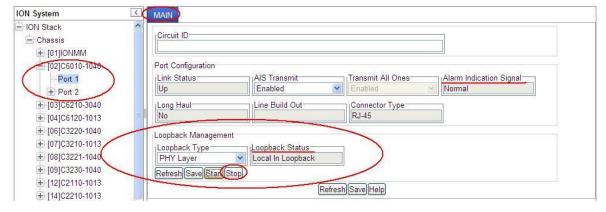
Example 1:

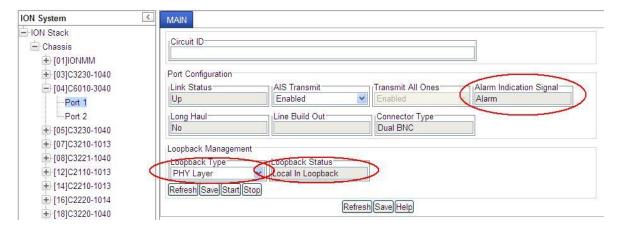

C1|S4|L1P1>show tdm port config link oper status: up alarm indication signal: normal taos transmit: enabled lbo status: unknown longhaul: no connector: Dual BNC C1|S4|L1P1>go l1p=2 C1|S4|L1P2>show tdm port config link oper status: down alarm indication signal: normal taos transmit: enabled connector: SFP Slot C1|S4|L1P2>

Example 2:


C1|S4|L1P1>show tdm port config link oper status: up normal alarm indication signal: taos transmit: enabled lbo status: t1LH-m22-5dB longhaul: yes connector: Dual BNC C1|S4|L1P1>go l1p=2 C1|S4|L1P2>show tdm port config link oper status: down alarm indication signal: normal taos transmit: enabled SFP Slot connector: C1|S4|L1P2>

Port Loopback Test - Web Method


1. Go to the x6010 > Port 1 > MAIN > Loopback Management section.


2. In the Loopback Type field, select PHY Layer.

3. Click the Start button. The Loopback Status field displays "Local In Loopback".

4. Click the **Refresh** button. Check if the **Alarm Indication Signal** field changes from "**Normal**" to "**Alarm**", as shown below.

Note that the Alarm Indication Signal field is not changed directly by this operation. However, in some cases, the Alarm Indication Signal field does change, because the AIS signal also does a loopback, and the loopback AIS signal is detected again by the FPGA.

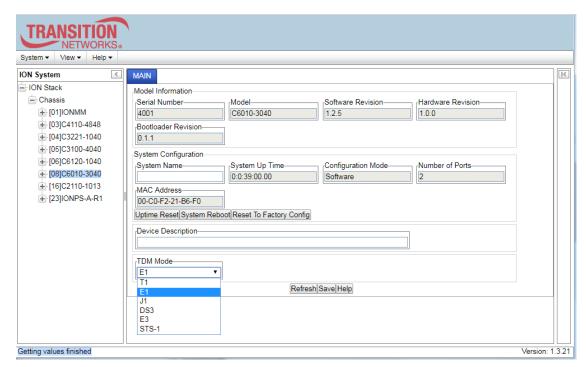
- 5. Click the **Stop** button. The **Loopback Status** field displays "**No Loopback**" again.
- 6. Click the **Loopback Management** section's **Save** button.
- 7. Click the **Refresh** button.
- 8. Verify the configuration.
- 9. Click the Port 1 MAIN tab's Save button when done.
- 10. Select **Port 2** and repeat steps 2-9 above.

TDM Mode Configuration

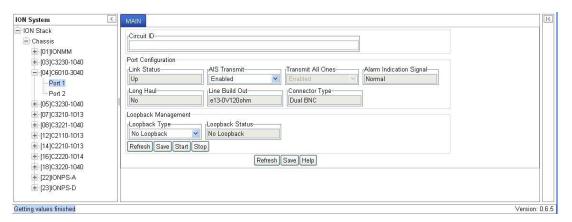
The x6010 is shipped from the factory in T1 mode. Use the procedure below to configure E1 mode.

You can configure E1 mode via either the CLI or the Web interface.

Configuring TDM Mode - CLI Method

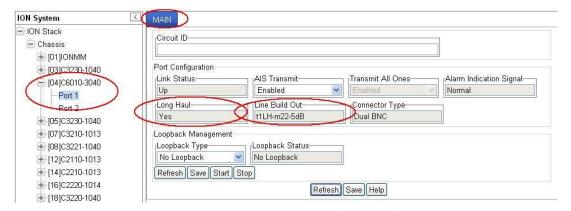

- 1. Set DIP Switch SW4 switch #4 to the Down position. See "DIP Switches" on page 27.
- 2. Install the x6010 as described in "Section 2: Installation and System Setup" on page 35.
- 3. Access the x6010 through either a USB connection (see "Starting a USB Session" on page 41) or a Telnet session (see "Starting a Telnet Session" on page 43).
- 4. At the x6010 CLI command prompt, use the **go** command to switch to Port 1. Type **go c**=1 **s**=*x* **I1p**=1 and press **Enter** (where x is the x6010 slot location in the ION chassis).
- 5. If required, enter a Circuit ID of up to 64 characters using the **set circuit-ID** command.
- 6. Configure the Loopback Management section as required using the **set tdm loopback oper** and the **set tdm loopback oper type** commands.
- 7. Configure TAOS Transmit. Type set taos transmit={disable | enable} and press Enter.
- 8. Verify the E1 mode configuration. For example:

```
C1|S4|L1D>show tdm config
tdm type:
                                                      e1
C1 | S4 | L1D>go l1p=1
C1|S4|L1P1>set tdm loopback type phylayer
C1|S4|L1P1>show tdm?
  config
 loopback
  port
C1|S4|L1P1>show tdm port config
link oper status:
                                                      up
alarm indication signal:
                                                      normal
taos transmit:
                                                      enabled
lbo status:
                                                      e13-0V120ohm
longhaul:
connector:
                                                      Dual BNC
C1|S4|L1P1>
C1|S4|L1D>go l1p=2
C1|S4|L1P2>show tdm port config
link oper status:
                                                      down
alarm indication signal:
                                                      normal
taos transmit:
                                                      enabled
connector:
                                                      SFP Slot
C1|S4|L1P2>
```

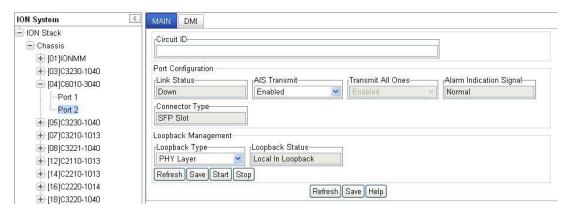

Configuring TDM Mode - Web Method

1. Set DIP Switch SW4 switch #4 to the Down position for E1 mode. See "DIP Switches" on page 27.

2. Go to the x6010 MAIN tab and locate the TDM Mode field.



- 3. At the **TDM Mode** dropdown, select the desired TDM mode. This is the current operating mode of the x6010, either **T1** or **E1**. The operating characteristics include T1=1.544 MHz; E1=2.048 MHz; E3=34.4Mbps; DS3=44.7Mbps; STS-1=51.8Mbps.
- 4. If desired, enter a new **System Name**.
- 5. If required, enter a **Device Description** of up to 64 characters.
- 6. Click the Save button.
- 7. Select Port 1.



8. If required, enter a **Circuit ID** of up to 64 characters.

- 9. Configure the Loopback Management section as required.
- 10. Note the **Long Haul**, **Line Build Out** and **Connector Type** field settings. Change the DIP switch settings as required for your particular site configuration.

- 11. Click the Save button at the bottom of the screen when done.
- 12. Select Port 2.

- 13. If required, enter a Circuit ID of up to 64 characters.
- 14. In the AIS Transmit section select Enabled or Disabled.
- 15. Note the Alarm Indication Signal field setting.
- 16. Click the **Save** button at the bottom of the screen when done.
- 17. Verify the x6010 **Port 1** (copper port) configuration settings:

Circuit ID – either blank or the information entered earlier displays (read/write field).

Link Status – either **Down** or **Up** displayed (read only field).

AIS Transmit – Select Enabled or Disabled as required (read/write field).

Transmit All Ones – Displays the port's TAOS status Enabled or Disabled (read only field).

Alarm Indication Signal - When "*Alarm*" displays, the other end has TAOS enabled and is currently transmitting an alarm condition. When "*Normal*" displays, there is no alarm (read only field).

Long Haul - Indicates the current position of the remote device's Short/Long haul configuration switch (read only field, e.g., **Yes** or **No**).

TDM Mode - Indicates the type of the current device. T1=1.544MHz; T1=2.048MHz; E3=34.4Mb/s; DS3 = 44.7Mbps; STS-1 = 51.8Mbps.

Line Build Out - The characteristics of the T1/E1 card's copper interface (read only field, e.g., e13-0V120ohm).

Connector Type – Dual BNC, SFP Slot, etc. (model dependent - read only field).

Loopback Type – either "**No Loopback**" or "**PHY layer**" loopback displayed.

Loopback Status – either "**Local In Loopback**" or "**No Loopback**" displayed.

18. Verify the x6010 **Port 2** (fiber port) configuration settings:

Circuit ID – either blank or the information entered earlier displays.

Link Status – either **Down** or **Up** displayed (read only field).

AlS Transmit – Select All Ones or Blue on the Port 2 fiber interface as an error signal when the Port 2 fiber interface is down. When this error signal is transmitted, the AIS of the device on the other end is activated, if supported (read/write field).

Transmit All Ones – displays the Transmit All Ones status – either **Enabled** or **Disabled** (read only field).

Alarm Indication Signal – Either "**Alarm**" or "**Normal**". When "**Alarm**" displays, this means that the other end has TAOS enabled and is currently transmitting an alarm condition. When "**Normal**" displays, this means no alarm (read only field).

Connector Type –SFP Slot, Dual BNC, etc. - model dependent (read only field).

Loopback Type – either "**No Loopback**" or "**PHY Layer**" loopback displayed (read/write field).

Loopback Status – either "Local In Loopback" or "No Loopback" displayed.

- 19. At the DMI tab (if supported and configured) set the **Rx Power Intrusion Threshold** (0-65535 μ W). The default is 0 uW (microwatts).
- 20. Click the **Refresh** button and verify the DMI status. See "DMI (Diagnostic Maintenance Interface) Test" on page 198 for more information.

Section 5: Operation

General

This section describes x6010 non-configuration operations (e.g., Backup, Restore, Reset, Upgrade, Reboot, Replace, etc.).

Backup and Restore Operations (Provisioning)

Through the Web interface you can back up and restore the configuration information for the IONMM and any or all of the NIDs in the ION system.

A <u>Backup</u> is used to get the SIC card running configuration, convert it to CLI commands, and save those CLI commands into the backup file. The backup file is stored in the IONMM. **Note**: Transition Networks recommends as a "best practice" to back up each SIC card's configuration after it is fully configured, so that in the event of an error or hardware failure, the configuration can be easily and rapidly restored.

A <u>Restore</u> is used to send the CLI commands in the configuration file to a SIC after removing the current SIC running configuration. If a problem causes the SIC card configuration restoration to stop (e.g., due to a lost network connection between the PC host and Agent card) the SIC card will use the previous configuration to run the traffic. If the IONMM card is downloading the restore configuration data to the SIC card, and the SIC card is physically removed from the chassis, the SIC card will use the factory default configuration setting when it is re-inserted into the chassis.

Transition Networks recommends that you to enter a "show card info" CLI command to view the NID's current configuration before a backup/restore operation to verify the desired configuration settings. There are several CLI show commands that allow you to display (show) information about a SIC card's configuration. For a complete description of these and other CLI commands see "Section 6: Command Line Interface (CLI) Reference" on page 124.

Note: Disable the DHCP client for each device that you backup/restore.

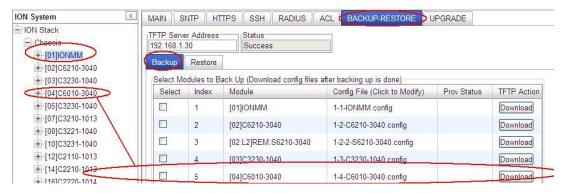
IMPORTANT

Doing a reboot, restart or upgrade of the IONMM, a power restart of the chassis, or a reset to factory removes temporary files (e.g. configuration backup files, Syslog file). A Factory Reset also removes the permanent settings (e.g. configuration files, HTTPS certification file, SSH key).

For more information on how the Reboot, Reset, and Power Off functions impact stored files, see:

- Table 18. Back Up and Restore File Content and Location on page 195
- Table 19. File Status after a Reset to Factory Defaults on page 200
- Table 20. File Content and Location after a System Reboot on page 203
- Table 21. File Content and Location after a Firmware Upgrade on page 218

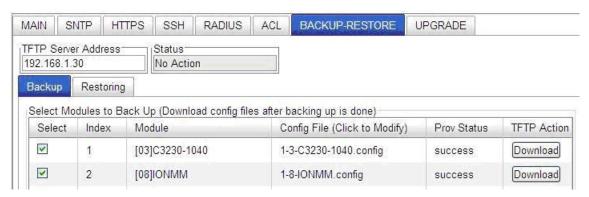
Note on Remote (L2D) Module Backup, Restore, and Upgrade


When doing a remote (L2) module backup, restore, or upgrade, the related table displays two Module numbers for the same slot. The first module is the chassis (local) device (e.g., [04]C6010-3040 shown below). The second module listed is the standalone (remote) device (e.g., [04:L2]REM:S6010-1040 shown below).

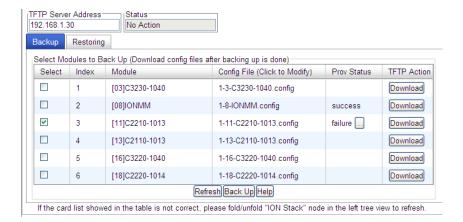
Backing Up Slide-In and Remote Module Configuration

The following procedure describes how to back up the configuration of one or more slide-in or remote modules in the ION system. The backup file is stored in x6010 memory.

- 1. Access the IONMM through the Web interface (see "Starting the Web Interface" on page 45).
- 2. Select the BACKUP-RESTORE tab. Select the Backup sub-tab if not already displayed.


- 3. Verify that the TFTP Server address shown is correct, that the TFTP Server is running and configured, and that the file to be downloaded is located correctly (e.g., at *C:\TFTP-Root*).
- 4. Verify that the card list shown in the table is correct; if not correct, fold and then unfold the "ION Stack" node in the left tree view to refresh.
- 5. Note the **Prov Status** field message (*Wrong Firmware, No Action,* etc.).
- 6. In the **Select** column, check the checkbox of each module to be backed up.

7. Do you want to rename the backup file?


Yes	No
 a) In the Config File column, click the file name. b) Type a new name for the backup file. Note: the file name must be 1–63 characters long and must end with .config. 	Continue with step 8 below.
c) Continue with step 8 below.	

- 8. Click the **Download** button. When completed, the message "File has successfully transferred via TFTP" displays.
- 9. Click the **OK** button to clear the web page message.
- 10. Click the **Back Up** button. The message "Backup is being processed ..." displays. The Back Up operation can take several minutes.
- 11. At the confirmation message, click **OK**. The message "Backup is being processed ..." displays. The Back Up operation can take several minutes.
- 12. When the confirmation window displays, click **OK**. The backup file is saved in the IONMM.

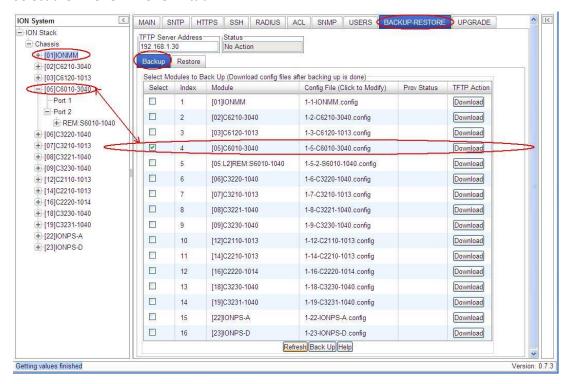
The **Prov Status** column displays the provision operation result (*ongoing*, *success*, or *fail*).

- 13. If the Back Up operation fails, go to step 15 below.
- 14. To send a copy of the backup file to the TFTP Server:
 - a. Make sure the TFTP Server is running and configured.
 - b. In the TFTP Server Address field, enter the IP address of the server.
 - c. Click the **Download** button. The message "File is being transferred" displays.
 - d. When the successful completion message displays, click **OK**. The TFTP Server now contains an emergency backup file for the module specified.
- 15. If the **Backup** operation fails, the **Prov Status** column displays failure ... Click the box to download an error log from the device.

The error (.ERR) log file is downloaded to the TFTP server address specified, in TFTP-Root with a filename such as *1-11-C6010-1040.config*. You can open the file in WordPad. See "The Config Error Log (config.err) File" section on page 188 for error messages and possible recovery procedures.

When the Back Up is successfully completed, you can edit the Config file (optional) or continue with the applicable Restore procedure. See:

- Editing the Config File (Optional) on page 84
- Restoring Slide-In and Remote Modules on page 85
- Restoring Standalone Modules on page 87


Backing Up Standalone Modules

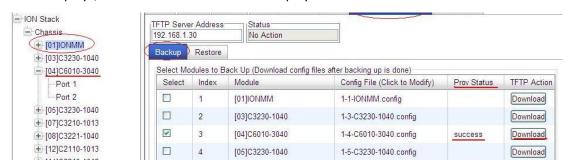
The following procedure describes how to back up the configuration of a standalone module.

IMPORTANT

Doing a reboot, restart, an upgrade or a reset to factory settings may cause some configuration backup files, HTTPS certification file, and Syslog file to be lost. Doing a reboot, restart or upgrade of the IONMM, a power restart of the chassis, or a reset to factory removes temporary files (e.g. configuration backup files, Syslog file). A Factory Reset also removes the permanent settings (e.g. configuration files, HTTPS certification file, SSH key).

- 1. Access the IONMM module through the Web interface (see "Starting the Web Interface" on page 45).
- 2. Select the **BACKUP-RESTORE** tab.

3. In the **Select** column, check the checkbox of the module to be backed up (C6010-3040 in slot 05 - Index #4 in the screen above). The attached standalone is REM S6010-1040 in slot 05 - Index #5


4. Do you want to rename the backup file?

Yes	No
 a) In the Config File column, click the file name. b) Type a new name for the backup file. Note: the file name must be from 1–63 characters in length and must end with .config. c) Continue with step 5. 	Continue with step 5.

- 5. Click the Back Up button.
- 6. When the confirmation window displays, click **OK**.

The backup file is saved in the IONMM module.

7. Click the **Download** button. When completed, the message "File has successfully transferred via TFTP" displays, and the Prov Status column displays "success".

- 8. Click the **OK** button to clear the web page message.
- 9. To send a copy of the backup file to the TFTP server:
 - a. Make sure the TFTP Server is running and configured.
 - b. In the TFTP Server Address field, enter the IP address of the TFTP server.
 - c. Click the **Download** button.
 - d. When the successful completion message displays, click OK.

When the Back Up is successfully completed, you can edit the Config file (optional) or continue with the applicable Restore procedure:

- Editing the Config File (Optional) on page 92
- Restoring Slide-In and Remote Modules on page 93
- Restoring Standalone Modules on page 95

Editing the Config File (Optional)

In some circumstances you may need to edit the backup Config file before restoring it. For example, you may want to globally change the FDB IDs or other addressing.

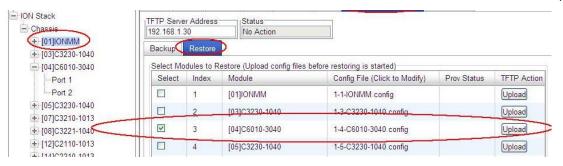
The procedure below provides steps typically used in editing a Config file.

- 1. Complete the applicable Backup procedure from the previous section.
- 2. Open the Config file (in Notepad, WordPad, Word, OpenOffice Writer, etc.) from the TFTP server location (e.g., C:\TFTP-Root\1-9-C6010-1040.config).
- 3. Edit the Config file sections. Each Config file contains a DEVICE LEVEL CONFIG section and two PORT x CONFIG sections.
- 4. Save the edited Config file back to the TFTP server location (e.g., C:\TFTP-Root\1-9- C6010-1040.config).
- 5. Continue with the applicable Restore procedure from the following section using the edited Config file.

A sample portion of a typical Config file is shown below.

```
[DEVICE LEVEL CONFIG]
set system name="C6010-1040"
set circuit-ID=""
[PORT 1 CONFIG]
set taos transmit=enable
set circuit-ID=""
[PORT 2 CONFIG]
set taos transmit=enable
set circuit-ID=""
```

Restoring Slide-In and Remote Modules' Configuration


The following procedure describes how to restore the configuration of one or more slide-in or remote modules in the ION system.

Note: these Restore procedures require that the TFTP server be running and properly configured, and that the backup configuration file is named and located properly.

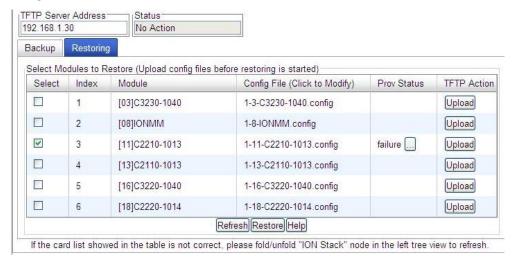
IMPORTANT

A restore operation can only be performed for a module that had its configuration file backed up (see Backing Up Standalone Modules on page 82).

- 1. Access the IONMM through the Web interface (see "Starting the Web Interface" on page 45).
- 2. At the BACKUP-RESTORE tab, select the Restore sub-tab. The "Modules to Restore" table displays.

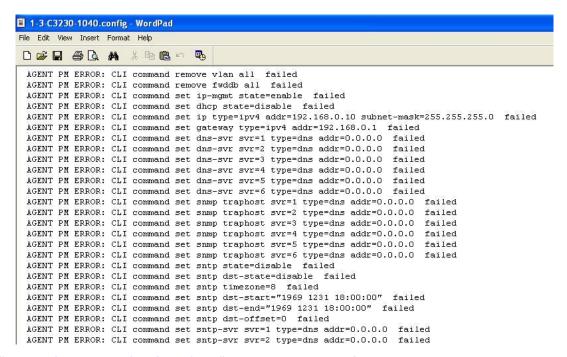
- 3. If the card list shown in the table is not correct, unfold the ION Stack in the left tree view, and then refold it to refresh the table information.
- 4. In the **Select** column, check the checkbox of each module to be restored.
- 5. Is the configuration file to be restored different than the one shown in the Config File column?

Yes	No
a) In the Config File column, click the file name.b) Type the name of the backup file to be restored.Note: the file name must end with .config.	Continue with step 6.
c) Continue with step 6.	


6. Does the configuration file need to be retrieved from the TFTP server?

Yes	No
a) In the TFTP Server Address field, enter the IP address of the server.	Continue with step 7.
b) Click Upload .	
c) When the successful transfer message displays, click OK .	
d) Continue with step 7.	

- 7. Click the **Upload** button. The config file is uploaded via the TFTP server. When done, the message "File has been successfully transferred via TFTP."
- 8. Click the **OK** button to clear the Webpage message.
- 9. Click the Restore button.
- 10. When the confirmation window displays, click **OK**.

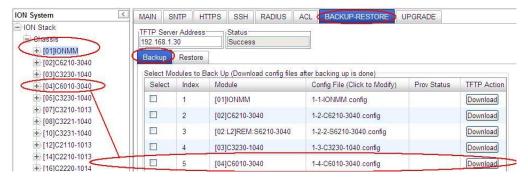

The configuration will be restored from the specified file. During the Restore operation the message "Restoring is being processed …" displays, and the **Prov Status** column displays "ongoing". When the Restore operation is successfully completed, success displays in the **Prov Status** column.

11. If the **Restore** operation fails, the **Prov Status** column displays failure . Click the box to download an error log from the device.

The error log file (.ERR file) is downloaded to the TFTP server address specified, in TFTP-Root with a filename such as 1-11-C2210-1013.config. You can open the file in WordPad or a text editor.

A sample portion of an error log file (.ERR file) is shown below.

See "The Config Error Log (config.err) File" section on page 188 for error messages and possible recovery procedures.


Restoring Standalone Modules

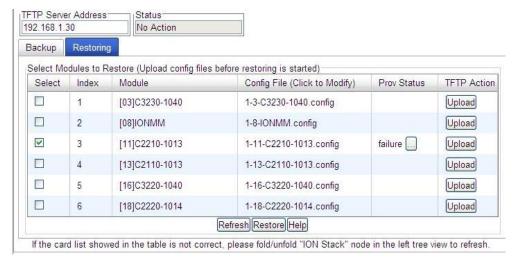
The following procedure describes how to restore the configuration of a standalone module.

IMPORTANT

A restore operation can only be performed for a module that had its configuration file backed up (see Backing Up Standalone Modules on page 152).

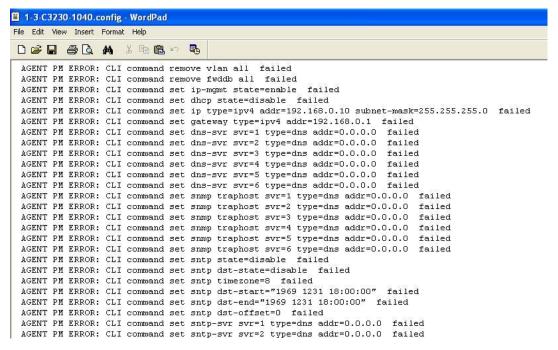
- 1. Access the IONMM module through the Web interface (see "Starting the Web Interface" on page 45).
- 2. Select the **BACKUP-RESTORE** tab.
- 3. Select the **Restore** sub-tab. The "Modules to Restore" table displays.

- 4. In the **Select** column, check the checkbox of the module to be restored.
- 5. Is the configuration file to be restored different than the one shown in the Config File column?


Yes	No
a) In the Config File column, click the file name.b) Type the name of the backup file to be restored. Note: the file name must end with .config.	Continue with step 5.
c) Continue with step 5.	

6. Does the configuration file need to be retrieved from the TFTP server?

Yes	No
a) In the TFTP Server Address field, enter the IP address of the server.	Continue with step 6.
b) Click Upload .	
c) When the successful transfer message displays, click OK .	
d) Continue with step 6.	


- 7. Click the **Upload** button. The config file is uploaded via the TFTP server. When done, the message "File has been successfully transferred via TFTP."
- 8. Click the **OK** button to clear the Webpage message.
- 9. Click the **Restore** button.
- 10. When the confirmation window displays, click **OK**.

The configuration will be restored from the specified file. During the Restore operation the message "Restoring is being processed …" displays, and the **Prov Status** column displays "ongoing". When the Restore operation is successfully completed, success displays in the **Prov Status** column.

The error log file (.ERR file) is downloaded to the TFTP server address specified, in TFTP-Root with a filename such as 1-11-C2210-1013.config. You can open the file in WordPad or a text editor.

A sample portion of an error log file (.ERR file) is shown below.

See "The Config Error Log (config.err) File" on page 188 for message descriptions.

Back Up and Restore File Content and Location

The IONMM card stores all configuration backup files, HTTPS certification file, and Syslog file.

Note: Doing a reboot, restart, an upgrade or a reset to factory settings may cause some configuration backup files, HTTPS certification file, and Syslog files to be lost. Doing a reboot, restart or upgrade of the IONMM, a power restart of the chassis, or a reset to factory removes temporary files (e.g. configuration backup files, Syslog file). A Factory Reset also removes the permanent settings (e.g. configuration files, HTTPS certification file, SSH key).

The Back Up operation backs up all of the SNMP settings (the same as what can be set via the Web interface / CLI) for one SIC into a file containing a list of CLI commands. This file can be downloaded from IONMM. When restoring for one SIC, you can upload a provisioning backup file (this file must have been made via the Backup operation and must be for the same SIC type) to the IONMM and do a Restore. See the IONMM Backup-Restore (**provisioning**) tab description. Currently, the Backup content includes configuration files, HTTPS certification file, the Syslog file, and certain other files, as outlined in the table below.

Changed Backed up? File Descripafter Re-File Type **Filename Stored Directory** tion (Y/N) store? (Y/N) These files are Yes - these files Provisioning only used by are created dur-/tftpboot No '1-1-IONMM.config' backup files provisioning Reing Backup operstore ation No - not needed; the configurations The MIB confige.g., MIB configuincluded in this 'agent3.conf' uration files for /agent3/conf Yes ration files file will be backed 'ifMib.conf' SNMP setting up by SNMP set operations

Table 8: Back Up and Restore File Content and Location

IONMM Backup All / Restore All

IONMM v 1.4.0 adds Backup All and Restore All capabilities. The new Backup All and Restore All features can be configured via the ION System Web GUI or CLI commands. The Backup/Restore feature provides Automatic TFTP transfer, Backup and restore of up to 41 modules at one time, Time-stamped filenames that include the stackname and index number, and Time-stamped tarfile containing all the config files. See the IONMM User Guide for details.

Displaying Information

There are several CLI commands that allow you to display (show) information about the NID configuration. For a complete description of these and other CLI commands see "Section 6: Command Line Interface (CLI) Reference" on page 124.

Reset to Factory Defaults

If need be, you can reset all configurations in the IONMM back to their original factory defaults. This operation can be accomplished through either the CLI or Web method.

IMPORTANT

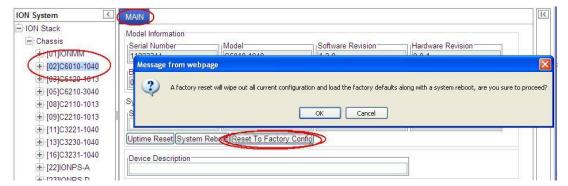
This operation deletes **all** configuration information that was saved in the IONMM.

Resetting Defaults - CLI Method

- 1. Access the NID through either a USB connection (see "Starting a USB Session" on page 41) or a Telnet session (see "Starting a Telnet Session" on page 43).
- 2. At the command prompt type: reset factory
- 3. Press Enter. The following displays:

Warning: this command will restart the specified card, connection will be lost! C1|S18|L1D>

All configuration parameters will be reset to their factory values. For a list of all factory defaults, see "Appendix B: Factory Defaults" on page 179).


Note: Your USB and/or Telnet session will be disconnected.

4. Set the IP configuration (see "Doing the Initial System Setup" on page 48).

Resetting Defaults - Web Method

Caution: This operation deletes all configuration information that was saved in the x6010, including the IP address you assigned to the x6010.

- 1. Access the NID through the Web interface (see "Starting the Web Interface" on page 45).
- 2. Select the MAIN tab.
- 3. Locate the **System Configuration** section.
- 4. Click the **Reset to Factory Config** button. The message "A factory reset will wipe out all current configuration and load the factory defaults along with a system reboot; are you sure to proceed?" displays.

5. Click **Cancel** if you are sure you want to proceed with the Reboot. Click **OK** only if you wish to reboot.

All configuration parameters will be reset to their factory values. For a list of all factory defaults, see "Appendix B: Factory Defaults" on page 179).

Note: Your Web session will be discontinued.

File Status after Reset to Factory Defaults

The table below shows the status of various system files after a reset to factory defaults.

Table 9: File Status after a Reset to Factory Defaults

File Type	Filename	File Description	Stored Directory	Status after Reset to Factory Default
Provisioning backup files	e.g., '1-1-IONMM.config'	These files are only used by provisioning Restore	/tftpboot	Lost
MIB 89config- uration files	e.g., 'agent3.conf' 'ifMib.conf'	The MIB configuration files for SNMP setting	/agent3/conf	Restored to factory configuration (lost)

Resetting Uptime

The device uptime field displays the amount of time that the ION system device has been in operation.

The System Up Time is displayed in the format days:hours:minutes:seconds.milliseconds. For example, a **System Up Time** field display of **9:8:15:18.26** indicates the ION system has been running for 9 days, 8 hours, 15 minutes, 18 seconds, and 26 milliseconds.

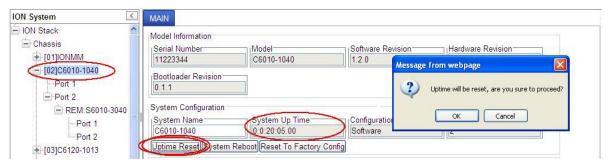
The ION **System Up Time** counter can be reset via the CLI or Web method.

Reset Uptime – CLI Method

- 1. Access the NID through either a USB connection (see "Starting a USB Session" on page 41) or a Telnet session (see "Starting a Telnet Session" on page 43).
- 2. At the command prompt type: **reset uptime** and press **Enter**.

The System Up Time field resets to zero, and immediately begins to increment. For example:

```
C1|S4|L1D>reset uptime
C1|S4|L1D>
```


Use the **show card info** command to display the current device uptime.

Note: The reset uptime command is not available for all ION system devices.

Reset Uptime – Web Method

1. Access the x6010 through the Web interface (see "Starting the Web Interface" on page 26).

2. At the MAIN tab, locate the **System Configuration** section.

- 3. If desired, observe and record the **System Up Time** field count.
- 4. Click the **Uptime Reset** button. The message "Uptime reset, are you sure" window displays.
- 5. Click **OK** to reset the system up time. The message "Setting values succeeded" displays at the bottom left of the screen when the Uptime reset is done.
- 6. Click the **Refresh** button at the bottom of the screen. The **System Up Time** field resets to zero, and immediately begins to increment.

Note: The System Up Time cannot be reset on a Remote S6210 (level 2 device) via the Web interface. If you Reset uptime on the connected (local) chassis device, the remote device's uptime counters are not reset.

Reboot

At times you may have to reboot (restart) the ION system. This operation can be accomplished by either the CLI or Web method.

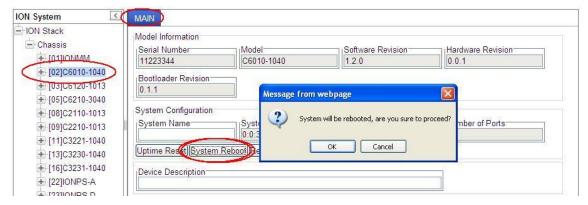
Note: this operation can take several minutes. The amount of time for the reboot to complete depends on the ION system configuration. When the reboot is finished, some devices (usually remote devices) will show the error condition of a "red box" around items like IP address, Trap Manager IP addresses, and/or DNS Entries. The 'red box' condition occurs while the devices are resetting; this condition can continue several minutes after the reboot.

See Table 19 in this section for file content and location after a System Reboot.

IMPORTANT

Doing a system reboot, restart, upgrade, or a reset to factory settings may cause some configuration backup files, HTTPS certification file, and Syslog file to be deleted.

Rebooting - CLI Method


- 1. Access the NID through either a USB connection (see "Starting a USB Session" on page 41) or a Telnet session (see "Starting a Telnet Session" on page 43).
- 2. At the command prompt type: **reboot** and press **Enter**. A warning displays: *this command will restart system, connection will be lost and please login again!* The ION system device reboots. If this operation is performed on a standalone module, the connection / session is terminated.
- 3. To reestablish the connection / session, wait about one minute, and then:
 - · For a USB connection
 - a) Select **Call > Disconnect**.
 - b) Select File > Exit.
 - c) Disconnect then reconnect one end of the USB cable.
 - d) Start a USB session (see "Starting a USB Session" on page 41).
 - For a Telnet session
 - a) Press Enter.
 - b) Start a Telnet session (see "Starting a Telnet Session" on page 43).

Rebooting - Web Method

Caution: Doing a system reboot may cause some configuration backup files, HTTPS certification file, and Syslog file to be lost.

Note: If you have a USB or Telnet session established, terminate the session before doing the reboot.

- 1. Access the x6010 through the Web interface (see "Starting the Web Interface" on page 45).
- 2. Select the MAIN tab.
- 3. Locate the **System Configuration** section.
- 4. Click the **System Reboot** button. The confirmation message "System will be rebooted, are you sure to proceed?" displays.

5. At the confirmation window, click the **OK** button to start the reboot, or click **Cancel** to quit the reboot.

The x6010 will restart and will be available for operations after about one minute.

Reboot File Content and Location

The table below shows file content and location resulting from a system re-boot.

Table 10: File Content and Location after a System Reboot

File Type	Filename	File Description	Stored Directory	Lost after Reboot? (Y/N)
Provisioning backup files	e.g., '1-1-IONMM.config'	These files are only used by provisioning Restore	/tftpboot	Yes
MIB configuration files	e.g., 'agent3.conf' 'ifMib.conf'	The MIB configuration files for SNMP setting	/agent3/conf	No

Upgrade the IONMM and/or NID Firmware

Occasionally changes must be made to the firmware version that is currently stored in IONMM or NID memory. This could occur because of features, fixes or enhancements being added.

Note: Transition Networks recommends that before completing any steps on an install that you verify that the IONMM and NIDs have the latest firmware version installed and running. by downloading the latest firmware. You must log in or create an account to download firmware. For further assistance Contact Us on page 245.

Ideally, all the cards in a chassis will be upgraded to the latest versions at the same time; running devices with a mix of old and new firmware can cause a "red box" condition. See "Section 6: Troubleshooting" on page 332.

Note: You cannot upgrade a module with multiple BIN files.

Upgrading modules via the IONMM will cause all configuration backup files to be lost.

You can upgrade the IONMM and/or NID Firmware from the Command Line Interface (CLI) or via the Web interface.

Upgrading IONMM and/or NID Firmware – CLI Method

Perform this procedure to upgrade the IONMM Firmware from the CLI.

- 1. Access the IONMM through either a USB connection (see "Starting a USB Session" on page 41) or a Telnet session (see "Starting a Telnet Session" on page 43).
- 2. Display the current version of the IONMM firmware. Type **show card info** and press **Enter**.
- 3. Determine the current TFTP server address using the **prov** command and press **Enter**. For example:

prov get tftp svr addr prov set tftp svr type=(ipv4|dns) addr=ADDR

- 4. Go to the Transition Networks Software Upgrades web page at http://www.transition.com/TransitionNetworks/TechSupport/Downloads/Software.aspx.
- 5. Locate the "Agent Firmware" section and click the link in the right hand column (e.g., "Download IONMM.bin.1.0.5.bin" or "Download C6010_0.6.7_AP.bin" and "Download C6010_0.6.7_FPGA_AP.bin").
- 6. Zip the downloaded file.
- Retrieve the firmware database file using the tftp get command to get the file from the TFTP Server, and then press Enter. For example:

tftp get iptype=(ipv4 | dns) ipaddr=ADDR remotefile=RFILE [localfile=LFILE] tftp put iptype=(ipv4 | dns) ipaddr=ADDR localfile=LFILE [remotefile=RFILE]

- 8. Unzip the file. Type **update firmware-db file=FILENAME** and press **Enter**.
- 9. Verify the Update results. Type show firmware-db update result and press Enter.
- 10. Upgrade the module. Type **upgrade module** and press **Enter**.

11. A table of available modules displays with upgrade instructions.

```
C1|S7|L1D>upgrade module
Available modules:
index
       module
                                               loc
   ION219
C3230-1040
                                               c=1 s=0 11d
                                               c=1 s=3 11d
3
       C3230-1040
                                               c=1 s=5 l1d
4
       S3230-1040
                                               c=1 s=5 l1ap=2 l2d
        IONMM
                                               c=1 s=7 11d
5
6
       C3231-1040
                                               c=1 s=10 l1d
7
       C2110-1013
                                               c=1 s=12 11d
       C2210-1013
                                               c=1 s=13 l1d
9
       C2220-1014
                                               c=1 s=16 l1d
10 C3220-1040
11 IONPS-A
                                               c=1 s=18 l1d
                                               c=1 s=22 l1d
Choose the module you want to upgrade: (eg. 1,3,16; at most 8 modules to
  upgrade, press 'q' to exit upgrade)
1,2,3,4,5,6,10,11
It may take some time to finish the task, you can continue with other works,
then use "show firmware upgrade result" to check result.
```

- 12. Choose the module(s) to upgrade (# 1-6,10,11 in the example above) and press Enter.
- 13. Verify the Upgrade results. Type **show firmware upgrade result** and press **Enter**. The firmware upgrade results are displayed in a table. If the firmware upgrade was successful, the *time started* and *time completed* display.

C1 S7 L1D>show firmware upgrade result					
index	module	status	reason	time started	time completed
1	card registering	success		00:21:23	00:21:32
2	C3230-1040 c=1 s=3 11d	inProgress		00:21:23	00:00:00
3	C3230-1040 c=1 s=5 l1d	inProgress		00:21:24	00:00:00
4	S3230-1040 c=1 s=5 l1ap=2 l2d	inProgress		00:21:24	00:00:00
5	IONMM c=1 s=7 lld	success		00:21:24	00:21:47
6	C3231-1040 c=1 s=10 l1d	inProgress		00:21:26	00:00:00
7	C3220-1040 c=1 s=18 l1d	inProgress		00:21:26	00:00:00
8	IONPS-A c=1 s=22 l1d	success		00:21:29	00:21:40
C1 S7 L1)>				

If a module upgrade was unsuccessful, the reason for the failure displays in the "reason" column of the table (e.g., *invalid input file*, *protocol timeout*). See "Section 5 – Troubleshooting" on page 281 for error messages and recovery procedures.

Upgrading IONMM and/or NID Firmware - Web Method

The following describes the procedure for upgrading the firmware in the IONMM through the Web Interface. If the IONMM is to be upgraded at the same time as other modules in the ION Chassis, see Upgrading Slide-In and Remote Modules.

Note: Doing an IONMM / NID firmware upgrade may cause configuration backup files to be lost.

The steps involved include **A**. Verify the current IONMM / NID Firmware version, **B**. Locate the current IONMM / NID Firmware version, **C**. Run the TFTP Server, and **D**, either 1. Upgrade IONMM / NID Firmware from the **MAIN** tab, or 2. Upgrade IONMM / NID Firmware from the **UPGRADE** tab.

A. Verify the Current IONMM / NID Firmware Version

Perform this procedure to display the current version of the IONMM firmware via the web interface.

- 1. Access the IONMM via the Web interface (see "Starting the Web Interface" on page 45).
- Select the MAIN tab and locate the Software Revision area in the Model Information section. (You can also use the Help dropdown and select About ION System Web Interface to determine the current firmware version.)
- 3. Note the current version of the x6010 NID or IONMM firmware for use in steps D1 and D2 below.

B. Locate and Download the New IONMM / NID Firmware Version

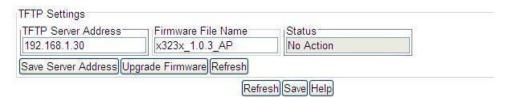
Perform this procedure to locate the IONMM Firmware version via the Web interface.

- Go to the Transition Networks Software Upgrades web page at http://www.transition.com/TransitionNetworks/TechSupport/Downloads/Software.aspx.
- 2. Locate the "Agent Firmware" section and examine the link in the right hand column (e.g., "Download x6010_1.0.5_AP.bin").
- Compare the IONMM / NID version displayed in the MAIN tab Software Revision area with the
 version number on the web site, and continue if the web site version is newer than the current
 (running) version.
- 4. Click the link located in step 1 above to download the new firmware files (e.g. "C6010_0.6.7_AP.bin" and "C6010_0.6.7_FPGA_AP.bin").

C. Run TFTP Server


This process requires a TFTP Server to load the new firmware. **Note**: A TFTP Server is not the same as an FTP server; they use different protocols. You cannot connect to the TFTP Server with an FTP client.

- 1. Install, run and configure the TFTP Server.
- Copy the file downloaded in step 4 above to the required TFTP Server location.
 Note: the upgrade file must be resident in the default directory on the TFTP server (normally C:TFTP-Root).
- 3. Note the location of the downloaded file and its filename for use in steps D1 and D2 below.


D. Upgrade the IONMM / NID Firmware

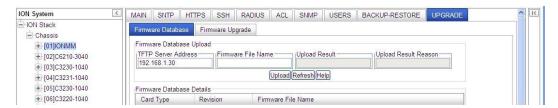
Perform this procedure to upgrade the IONMM / NID Firmware from either

- the IONMM MAIN tab (step D1) or
- the UPGRADE tab (step D2).
- **D1**. Upgrade IONMM / NID Firmware from the **MAIN** Tab.
 - 1. Access the IONMM card through the Web interface (see "Starting the Web Interface" on page 45).
 - 2. Select the MAIN tab.
 - 3. Locate the **TFTP Settings** section at the bottom of the screen.

- 4. Enter the **TFTP Server Address.** This is the IP address of the TFTP Server from step C ("Run TFTP Server") above.
- 5. Enter the **Firmware File Name**. This is the name of the firmware file from step C sub-step 2 above.

6. Click the **Upgrade Firmware** button.

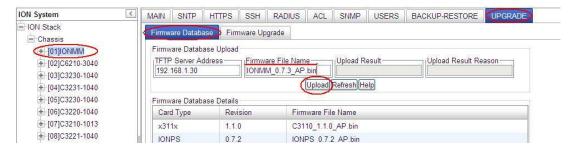
The message "The specified firmware on the TFTP Server will be upgraded to the current module; are you sure to proceed?" displays.


7. Click OK.

The file is downloaded and the x6010 and/or IONMM reboots. When the reboot is complete, the message "[xx]IONMM rebooting finished" displays.

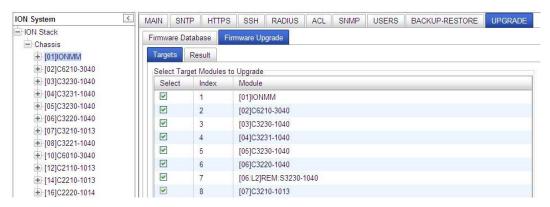
- 8. Click the **Refresh** button. The **Software Revision** area is updated from the old version number to the new version number (e.g., from 1.0.3 to 1.0.5).
- 9. If you will be using the same TFTP Server Address for future upgrades, click the **Save Server**Address button.

D2. Upgrade IONMM / NID Firmware from the **UPGRADE** Tab


- 1. Access the IONMM card through the Web interface (see "Starting the Web Interface" on page 45).
- 2. Select the **UPGRADE** tab.
- 3. Select the **Firmware Database** sub-tab if not already selected.
- 4. Locate the **Firmware Database Upload** section.

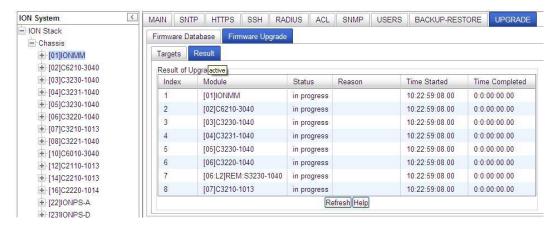
- 5. Enter the **TFTP Server Address.** This is the IP address of the TFTP Server from step C ("Run TFTP Server") above.
- 6. Enter the **Firmware File Name**. This is the name of the firmware file from step C sub-step 5 above.
- 7. Click the **Upload** button.

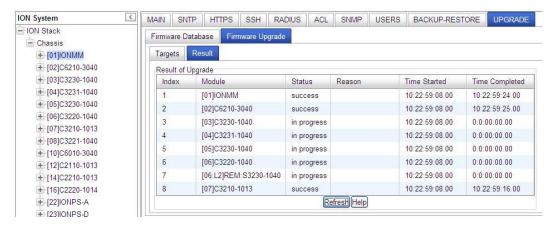
The message "The Firmware Database File is being transferred." displays during the upload, and the **Upload Result** area displays In Progress.


When successfully completed, the message "Getting all records finished" displays, the **Upload Result** area displays "Success", and the **Firmware Database Details** section displays updated firmware information.

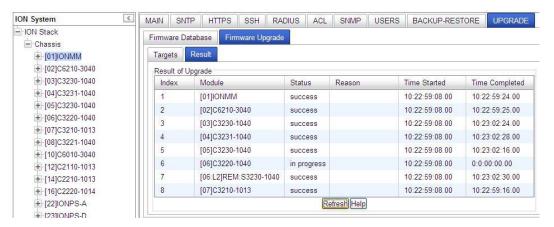
- 8. If the firmware upload operation failed, the **Upload Result** area displays either:
 - None: no operation was performed, or
 - **Failure**: the specified operation has failed.

The **Upload Result Reason** area displays a description of the cause of the upload 'Failure'. This area is blank if the **Upload Result** displayed is anything other than 'Failure'.


- 9. Click the **Firmware Upgrade** sub-tab.
- 10. Click the **Targets** sub-tab if not already displayed. The modules available to be upgraded display in a table.

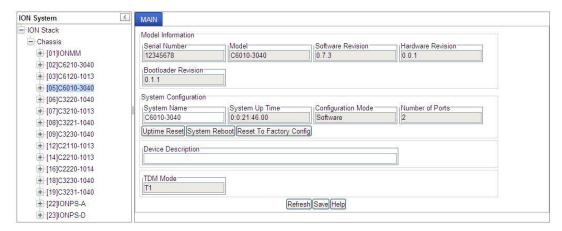

- 11. In the **Select** column, check the **IONMM** and/or one or more NIDs as the Target Module(s) to be upgraded.
- 12. Click the Upgrade button.
- 13. Click the **OK** button to proceed.
 During the upload, the message "Getting records in progress..." displays.
 If the upload was successful, the message "Getting all records finished" displays.

If the upload was unsuccessful, "Getting records failed (http server error)" displays.

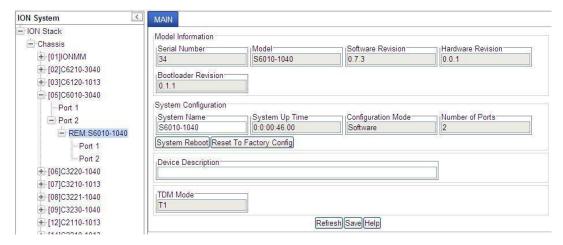

14. Click the **Result** sub-tab. A table displays with upgrade status information.

15. Click the Refresh button.

16. If upgrading more than one device, you may have to click Refresh again.



Note: the upgrade will take one or more minutes to complete. The exact amount of time for the upgrade depends on the number of modules being upgraded.


17. After the upgrade has successfully completed, "success" displays in the **Status** column of the Result sub-tab window. If the upgrade fails, the **Reason** column displays a failure code. See "Section 5 – Troubleshooting" on page 301 for error messages and recovery procedures.

Check the **MAIN** tab for each upgraded module to ensure that the correct revision level is displayed in the **Software Revision** field. You may have to click **Refresh** to display the updated Software Revision level.

The sample screen above shows a C6010-3040 **MAIN** tab with the Software Revision field indicating a successful firmware upgrade to version 0.7.3.

The sample screen below shows a remote \$6010-1040 upgraded to version 0.7.3.

Upgrading Slide-In and Remote Modules Firmware via TFTP

This procedure is used to upgrade one or more of the slide-in modules installed in the ION Chassis or a remote module connected to a slide-in module.

Before you can upgrade the firmware in the ION system modules you must do the following:

- Have the upgrade files resident in the default directory on the TFTP Server (normally C:/TFTP-Root). To find the latest version of the firmware, go to:
 http://www.transition.com/TransitionNetworks/TechSupport/Downloads/Software.aspx.
- Create the Database Index and Archive Files (below).
- Perform the Module Firmware Upgrade (page 299).

Creating the Database Index and Archive Files

The database index file is a listing of the modules that can be upgraded and the firmware file that will be used to upgrade each module. The index file must be named **db.idx**. The archive file is a zip file containing the index file and the firmware upgrade files. The archive file must be named **db.zip** in Windows XP. If using Windows 7, name the index file just "**db**".

The following describes the procedure for creating the firmware database index and archive files.

1. Launch the program that will be used to create the index file (db.idx).

Note: a program such as Notepad can be used to create the file.

2. Make an entry for each firmware file to be used for the upgrade in the following format:

```
model rev file

Where:

model = name of the module

rev = revision level of the firmware upgrade file

file = name of the firmware upgrade file
```

Note: Each of the three fields must be separated by a single space or a single tab.

EXAMPLE

Below is a sample **db.idx** file that upgrades two chassis-resident modules (IONMM and C6010-3040). Note that two upgrade files are required for the x6010 upgrade process.

```
IONMM1.1.0 IONMM.bin.1.0.5_AP
C6010-3040 1.1.0 C6010_0.6.6_FPGA_AP
C6010-3040 1.1.0 C6010 0.6.6 AP
```

3. Save the file as **db.idx**.

Note: if you used a program, such as Notepad, that does not allow you to save the file as .idx, then save it as a text file and rename it (i.e., change *db.txt* to *db.idx*).

4. Create a zip file that contains each of the upgrade files and the index file. Save the .zip file to the TFTP Server root directory (e.g., filename of **x6010.bin.1.2.5.zip**).

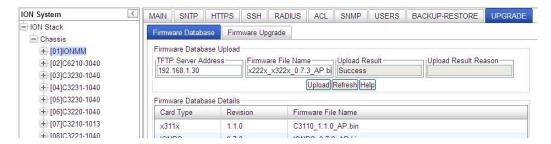

For example, using the files listed in the EXAMPLE above, the db.zip file would contain the following four files:

- db.idx
- IONMM.bin.1.1.0
- C6010 1.1.0 FPGA AP
- C6010 1.1.0 AP
- 5. Perform the upgrade (see Performing the Module Firmware Upgrade below).

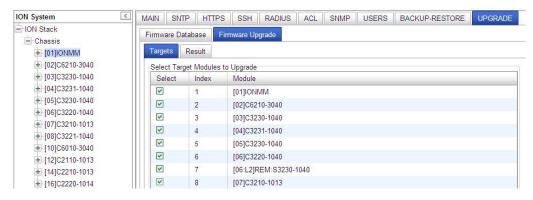
Performing the Module Firmware Upgrade

The upgrade consists of two parts: uploading the archive file to the IONMM, and then loading the upgrade file into the appropriate modules. The following procedure is for upgrading the ION family modules. This procedure assumes that the TFTP server is running and is configured to send and receive transmissions, and that it contains the .zip file created on the previous page.

- 1. Access the IONMM through the Web interface (see "Starting the Web Interface" on page 45).
- 2. Select the **Upgrade** tab. The **Firmware Database** sub-tab displays.

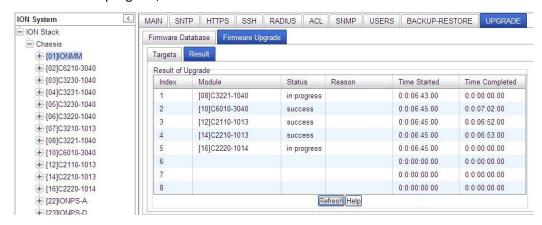


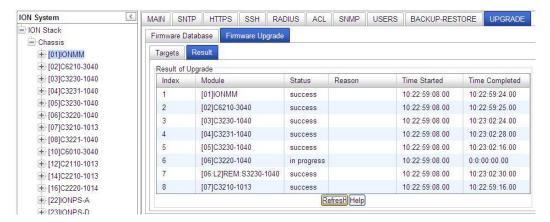
- 3. In the **TFTP Server IP Address** field, enter the IP address of the TFTP Server where the upgrade (zip) file is located.
- 4. In the **Firmware File Name** field, enter the name of the zip file you created (e.g., **x6010.bin1.0.5.zip**). **Note**: Be sure to include the .zip extension in the filename.
- 5. Click the **Upload** button.


The firmware file is uploaded from the TFTP server. **Note:** this operation can take several minutes. The amount of time for the upload to complete depends on the size of the file. The messages "Getting values in progress" and "Getting values finished" display during the upload process.

6. Wait for the file to successfully upload. The messages "The Firmware Database File is being transferred...." and "Getting all records finished" display during the upload process.

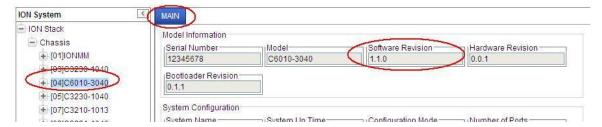
The message "Success" displays in the **Upload Result** field and the modules listed in the **db.idx** file will be listed in the **Firmware Database Details** section.


7. Select the **Firmware Upgrade** sub-tab. The **Targets** sub-tab displays.


8. In the **Select** column, check the checkbox of each module to be upgraded.

Note: You cannot upgrade a module and a remote module connected to it at the same time. In order to upgrade both, you must first do one and then the other.

- 9. Click the **Upgrade** button at the bottom of the screen.
- 10. When the confirmation window displays, click the **OK** button.
- 11. To monitor the progress, select the **Result** sub-tab and click **Refresh**.


If the Status in progress displays, click **Refresh** again; the Status success displays.

Note: the upgrade will take one or more minutes to complete. The exact amount of time for the upgrade depends on the number of modules being upgraded.

After the upgrade has successfully completed, "success" displays in the **Status** column of the Result sub-tab window. If the upgrade fails, the **Reason** column displays a failure code. See "Section 5 – Troubleshooting" on page 261 for error messages and recovery procedures.

12. Check the **MAIN** tab for each module to ensure that the correct revision level is displayed in the **Software Revision** field.

The sample screen above shows the C6010-3040 **MAIN** tab with the **Software Revision** field indicating a successful firmware upgrade to version **1.1.0**.

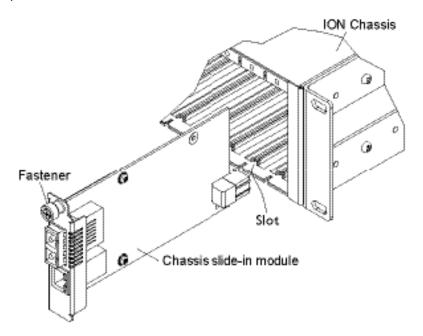
Firmware Upgrade File Content and Location

The table below shows file content and location resulting from a firmware upgrade.

Table 11: File Content and Location after a Firmware Upgrade

File Type	Filename	File Description	Stored Directory	Lost after Firmware Upgrade? (Y/N)
Provisioning backup files	e.g., '1-1-IONMM.config'	These files are only used by provisioning Restore	/tftpboot	Yes
MIB 107con- figuration files	e.g., 'agent3.conf' 'ifMib.conf'	The MIB configura- tion files for SNMP setting	/agent3/conf	No

Additional Upgrade Procedures


Additional upgrade procedures are available for the ION system. Refer to the *IONMM User Guide* for these IONMM upgrade procedures:

- Upgrade the IONMM and/or NID Firmware.
- Upgrade Slide-In and Remote Modules Firmware via TFTP. This procedure is used to upgrade one or more of the slide-in modules installed in the ION Chassis or a remote module connected to a slide-in module. Requires you to 1) Create Database Index and Archive Files, and 2) Perform the Module Firmware Upgrade.
- Perform the Module Firmware Upgrade the upgrade consists of two parts: uploading the archive file to the IONMM, and then loading the upgrade file into the appropriate modules. This procedure is for upgrading the ION system modules.

Replacing a Chassis Resident NID

The x6010 is a "hot swappable" device (it can be removed and installed while the chassis is powered on). To replace a chassis resident x6010, do the following.

- 1. Backup the configuration (see Backing Up Slide-In and Remote Modules on page 150.
- 2. Disconnect any cables attached to the x6010.

- 3. Loosen the panel fastener by turning it counterclockwise.
- 4. Pull the x6010 from the Chassis.
- 5. Carefully slide the new x6010 fully into the slot until it seats into the backplane.
- 6. Push in and rotate the attached panel fastener screw clockwise to secure the x6010 to the chassis.
- 7. Connect the appropriate cables to the x6010.
- 8. Load (restore) the configuration into the new x6010 (see Restoring Slide-In and Remote Modules on page 234).

Section 6: Command Line Interface (CLI) Reference

General

This section describes CLI use and the commands for the x6010.

Command Line Editing

This section describes how to enter CLI commands.

A CLI command is a series of keywords and arguments. Keywords identify a command, and arguments specify configuration parameters.

Display Similar Commands

At the command line, you can use the keyboard Tab key or? key to show available commands in a category of commands after entering a part of the command.

For example, use the $tab \rightarrow tab$ key to enter part of the command (**show ether** in this example) to display all of the available commands that start with **show ether**. The commands display in a single row.

```
C1|S8|L1D>show tdm <tab key>
config loopback port
C1|S8|L1D>
```

Use the ? key after a partial CLI command entry to display all of the available commands that start with show ether, but in a single column:

```
C1|S8|L1D>show tdm ?
config
loopback
port
C1|S8|L1D>
```

Partial Keyword Lookup

If you terminate a partial keyword with a question mark, alternatives that match the initial letters are provided. (Remember to not leave a space between the command and question mark.) For example "s?" shows all the keywords starting with "s."

Recall Commands

To recall recently-entered commands from the command history, perform one of the optional actions below:

Ctrl-P or **Up arrow** (↑) key: Recall commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.

Ctrl-N or **Down arrow** (\downarrow) key: Return to more recent commands in the history buffer after recalling commands with Ctrl-P or the Up arrow key. Repeat the key sequence to recall successively more recent commands.

Keystroke Commands

The table below shows the optional keystrokes available to edit command lines (*indicates HyperTerm support, ** indicates command prompt support, *** indicates both HT and command prompt support by this keystroke).

Table 12: Keystroke Editing Commands

Capability	Keystroke	Purpose
Move the command line around to make changes or corrections	Ctrl-B *** or left (←) arrow key ***	Move the cursor back one character.
	Ctrl-F *** or right (→) arrow key ***	Move the cursor forward one character.
	Ctrl-A ***	Move the cursor to the beginning of the command line.
	Ctrl-E ***	Move the cursor to the end of the command line.
Recall commands from the buffer and paste them in the command line	Ctrl-Y ***	Recall the most recent entry in the buffer.
	Ctrl-T **	Transpose the character to the left of the cursor with the character located at the cursor.
	Ctrl-Y **	Recall the most recent entry in the buffer.
Delete entries (if you make a mistake or change your mind)	Delete key *** or Backspace key ***	Erase the character to the left of the cursor.
	Ctrl-D ***	Delete the character at the cursor.
	Ctrl-K ***	Delete all characters from the cursor to the end of the command line.
	Ctrl-U *** or Ctrl-X ***	Delete all characters from the cursor to the beginning of the command line.
	Ctrl-W ***	Delete the word to the left of the cursor
	Esc D **	Delete from the cursor to the end of the word.
Capitalize or lowercase words or capitalize a set of letters	Esc C *	Change case from capital to lower-case (or lower-case to capital) at the cursor.
Redisplay the current command line if the switch unexpectedly sends a message to your screen	Ctrl-L *** or Ctrl-R ***	Redisplay the current command line (reverse-i-search).

Command Descriptions

This section defines the x6010 CLI commands in terms of syntax, descriptions, and examples.

Command: Password for Login / Access

Syntax: Password: private

Description: The default device CLI password. CLI entry requires a successful password entry.

Example: Password:

Login incorrect login: ION Password:private

Hello, this is ION command line (version 1.00).

Copyright 2009 Transition Networks.

AgentIII C1|S1|L1D>

In order to control the NIDs via a USB interface, the command line prompt must be showing the location of the module to be managed. Use the procedure below to access the NID and login via USB connection.

- 1. Start the terminal emulator program (e.g., HyperTerminal).
- 2. When the emulator screen displays, press **Enter**. The login prompt displays. If your system uses a security protocol (e.g., RADIUS, SSH, etc.), you must enter the login and password required by that protocol.
- 3. Type **ION** (all upper case) and press **Enter**. The password prompt displays. If a "Login incorrect" message displays, ignore it.
- 4. Type your password. The default is **private** (all lower case).
- 5. Press Enter. The HyperTerminal command line prompt displays (C1|S3|L1D>).
- 6. Enter CLI commands to set up, configure, operate, and maintain the x6010.

Command: Log Out (Quit)

Syntax: q(uit)

Description: Exit the current mode and return to the previous mode (the command line prompt).

Example: C1|S3|L1D>q login:

Note: At IONMM FW v 1.3.14 and before, the ION System does not automatically log out upon exit or after a timeout period, which could leave it vulnerable if left unattended. Follow your organizational policy on when to sign out.

At IONMM FW v 1.3.15 and above, a 15 minute inactivity timeout was added. Also note that at login, a timestamp is shown while the page loads.

Command: Help (?)

Syntax: ?

Description: Displays all available command line commands.

Example: A ? (Help) command listing is shown below.

```
C1|S4|L1D>?
  add
            Add a ACL condition.
  clear
            Clear all counters of the specified Ethernet port.
  cls
            Clear the screen.
            Set the location to device/port of the SIC to be operated.
  go
  home
            Go back to the IONMM card.
            Display a list of all available commands.
  list
  ping
            Send ICMP ECHO-REQUEST to network hosts.
            Get / set current TFTP server address.
  prov
  ps
            Report a snapshot of the current processes.
            Show current directory.
  pwd
  quit
            Exit current mode and down to previous mode.
            Warm start the system.
  reboot
            Reset all ports counters/factory defaults/uptime.
  reset
  set
            Set AIS, Circuit-ID, DMI, etc.
            Show AIS, DMI, TDM information.
  show
  start
            Start TDR test of the specified Ethernet port.
            Show topology information of the chassis.
  stat
  tftp
            Get/put/upgrade a file from via TFTP server.
            Update a firmware database file.
  update
            Upgrade firmware modules.
  upgrade
C1|S4|L1D>
```

Command: Go to another location

Syntax: go < location string>

Description: Set the location to device/port of the SIC to be operated.

Usage: go [c=<0-16>] [s=<0-32>] [l1ap=<1-15>] [l2ap=<1-15>] (l1p=<1-5>|l2p=<1-15>|l3p=<115>|l1d||2d||3d)

Example: C1|S1|L1D>go c=1 s=4 l1d

C1|S4|L1D>go c=1 s=6 l1d

Invalid location parameters, cannot find the physical entity!

C1|S4|L1D>go c=1 s=8 l1d C1|S8|L1D>go c=1 s=8 l1p=1

C1|S8|L1P1>

Command: Show TDM Configuration

Syntax: show tdm config <cr>

Description: A system-level command that displays the x6010 TDM type (the current x6010 device's

operating mode, either *T1* or *E1*). Note: at the port level, use the show tdm port config

command.

Example: Agent III C1|S2|L1D>show tdm ?

config inband loopback peer port

Agent III C1|S2|L1D>show tdm config

tdm type:

Agent III C1|S2|L1D>

Command: Show TDM Loopback Capability

Syntax: show tdm loopback capability <cr>

Description: A port-level command that displays the port's TDM loopback setting (either

noLoopback or phyLayer).

Example: Agent III C1|S2|L1D>show tdm loopback capability

Error: this command should be executed on a port!

Agent III C1|S2|L1D>go l1p=1

Agent III C1|S2|L1P1>show tdm loopback capability

Loopback capability: phyLayer

Agent III C1|S2|L1P1>go l1p=2

Agent III C1|S2|L1P2>show tdm loopback capability

Loopback capability: phyLayer

Agent III C1|S2|L1P2>

t1

Command: Show TDM Loopback State

Syntax: show tdm loopback state <cr>

Description: A port-level command that displays the port's TDM loopback type and state.

Example: Agent III C1|S2|L1P2>show tdm loopback state

Loopback type: phylayer Loopback state: noLoopback

Agent III C1|S2|L1P2>show tdm loopback state

Loopback type: phylayer Loopback state: noLoopback

Agent III C1|S2|L1P2>set tdm loopback oper init Agent III C1|S2|L1P2>show tdm loopback state

Loopback type: phylayer

Loopback state: localInLoopback

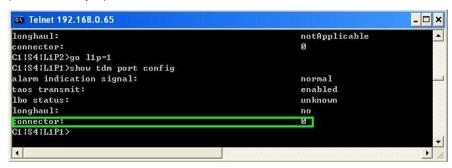
Agent III C1|S2|L1P2>

Agent III C1|S2|L1P2>go l1p=1

Agent III C1|S2|L1P1>show tdm loopback state

Loopback type: phylayer Loopback state: noLoopback Agent III C1|S2|L1P1>

Command: Show TDM Port Configuration


Syntax: show tdm port config <cr>

Description: A port-level command that displays the x6010 TDM table containing the current

x6010 device port's TDM configuration settings. **Note**: at the device level, use the **show**

tdm config command.

Example 1: (Telnet example)

Example 2: C1|S4|L1P2>show tdm port config

link oper status: down alarm indication signal: normal taos transmit: enabled connector: SFP Slot C1|S4|L1P2>

Example 3: C1|S4|L1P1>show tdm port config

link oper status:

alarm indication signal:

taos transmit:

lbo status:

longhaul:

connector:

C1|S4|L1P1>

up

normal

enabled

unknown

no

Dual BNC

Example 4: C1|S4|L1P1>show tdm port config

link oper status:

alarm indication signal:

taos transmit:

lbo status:

longhaul:

connector:

C1|S4|L1P1>

down

normal

enabled

e13-0V120ohm

no

Dual BNC

Messages: Error: Get Alarm Indication Signal no such object.

Command: TAOS Transmit Enable/Disable

Syntax: set taos transmit=(enable | disable)

Description: A port-level command that defines the current x6010 port's ability to send TAOS

(Transmit All OneS) signals. Defines the port's ability to Transmit an All Ones pattern.

The default setting is enabled.

Example: C1|S4|L1D>set taos ?

transmit

C1|S4|L1D>set taos transmit ?

disable enable

C1|S4|L1D>set taos transmit enable

Error: this command should be executed on a port!

C1|S4|L1D>go l1p=1

C1|S4|L1P1>set taos transmit enable

C1|S4|L1P1>go l1p=2

C1|S4|L1P2>set taos transmit enable

C1|S4|L1P2>

Note: Use the **show tdm port config** command to display the current TAOS status.

Command: Show DMI Information

Syntax: show dmi info <cr>

Description: Displays the Diagnostic Monitoring Interface (DMI) information (dmi table) for a fiber

port.

Example: Agent III C1|S2|L1P2>show dmi info

Diagnostic monitoring interface information:

DMI connector type: LC DMI indentifier: **SFP** DMI Nominal bit rate: 1300*Mbps DMI 9/125u Singlemode Fiber (m): N/A DMI 50/125u Multimode Fiber (m): 500*m DMI 62.5/125u Multimode Fiber (m): 30*10m Copper(m): N/A DMI fiber interface wavelength: 850*nm DMI temperature: 40.8*C DMI temperature: 105.4*F DMI temperature alarm: normal DMI transmit bias current: 4784*uA DMI transmit bais alarm: normal DMI Transmit power: 252*uW DMI Transmit power: -5.986*dBM DMI Transmit power alarm: normal DMI Receive power: 242*uW -6.162*dBM DMI Receive power: DMI Receive power alarm: normal

DMI Receive power intrusion threshold:

Agent III C1|S2|L1P2>

0*uW

Command: Set DMI Receive Power Preset Level

Syntax: set dmi rx-power-preset-level=<x> ??

Description: Defines a fiber port's current RX power threshold.

where x = <0-10>

Example: C1|S4|L1D>set dmi ?

rx-power-preset-level

C1|S4|L1D>set dmi rx-power-preset-level 5

Error: this command should be executed on a port!

C1|S4|L1D>go l1p=1

C1|S4|L1P1>set dmi rx-power-preset-level 5

DMI is only supported on FIBER port!

C1|S4|L1P1>go l1p=2

C1|S4|L1P2>set dmi rx-power-preset-level 5

C1|S4|L1P2>

Note: use the **show dmi info** command to display the current Diagnostic monitoring interface information.

Command: Set TDM Loopback Operation

Syntax: set tdm loopback operation=<init|stop> <cr>

Description: Defines the current port's TDM loopback operating configuration to either *init* (start) or

stop.

Example: C1|S4|L1P2>**set tdm**?

loopback

C1|S4|L1P2>set tdm loopback ?

oper type

C1|S4|L1P2>set tdm loopback oper ?

init stop

C1|S4|L1P2>set tdm loopback oper init C1|S4|L1P2>set tdm loopback oper stop

- 1 - 1 - - -

C1|S4|L1P2>

Command: Set TDM Loopback Type

Syntax: set tdm loopback type=<x> <cr>

Description: Defines the current port-level TDM loopback operating configuration to either no

loopback or phylayer loopback.

Example: C1|S4|L1P2>set tdm?

loopback

C1|S4|L1P2>set tdm loopback ?

oper type

C1|S4|L1P2>set tdm loopback type ?

noloopback phylayer

C1|S4|L1P2>set tdm loopback type noloopback C1|S4|L1P2>set tdm loopback type phylayer

C1|S4|L1P2>

Command: Set System Name

Syntax: set system name=(name) <cr>

Description: Changes the name assigned to the x6010 device. The default setting is blank.

Example: C1|S4|L1D>set system name=C6010@Corporate

C1|S4|L1D>show card info

System name: C6010@Corporate
Uptime: 1 day, 00:43:51

Port number: 2

Serial number: 12345678
Config mode: software
Software: 1.1.0
Bootloader: 0.1.1
Hardware: 0.0.1

C1|S4|L1D>

The system name default is x6010 (case sensitive – the S or C in capitals). The **show card info** command displays the system name and other descriptive information.

Command: Show Card Information

Syntax: show card info

Description: Displays the device information (sys config table) for the x6010.

Example: Agent III C1|S8|L1D>show card info

System name:

Uptime: 00:02:17

MAC: 00-c0-f2-21-b6-f0

Port number: 2
Serial number: 4001
Config mode: software
Software: 1.2.5
Bootloader: 0.1.1
Hardware: 1.0.0

Agent III C1|S8|L1D>

Command: Show Card Type

Syntax: show cardtype

Description: Displays the model number of the device.

Example: Agent III C1|S8|L1D>show cardtype

Card type: C6010-3040

Agent III C1|S8|L1D>

Command: Show Firmware Upgrade Result

Syntax: show firmware upgrade result

Description: Used to verify the IONMM Upgrade results. Type show firmware upgrade result and

press **Enter**. The firmware upgrade results are displayed in a table. If the firmware

upgrade was successful, the time started and time completed display.

See the IONMM User Guide for specifics. See the "Upgrade" section for the procedure.

See "Section 5 – Troubleshooting" on page 271 for error messages and recovery

procedures.

Command: Show Firmware Database Update Result

Syntax: show firmware-db update result

Description: See the IONMM User Guide for specifics. See the "Upgrade" section for the procedure.

See "Section 5 – Troubleshooting" on page 271 for error messages and recovery

procedures.

Command: Prov Get TFTP Server Address

Syntax: prov get tftp svr addr

Description: Accesses the TFTP server's IP address.

Example: C1|S4|L1AP2|L2D>prov get tftp svr addr

C1|S4|L1AP2|L2D>

Command: Prov Set TFTP Server Address

Syntax: **prov set tftp svr type**

Description: Defines the TFTP Server IP address for TFTP server operations.

Example: C1|S4|L1AP2|L2D>prov set tftp svr type ipv4 addr 192.168.1.30

C1|S4|L1AP2|L2D>

Command: Set Circuit ID

Syntax: set circuit-ID=<xx> <cr>

Description: Lets you define an ASCII text string up to 63 bytes and override the default Circuit ID,

which is vlan-module-port in binary format, for a device and/or device ports, where:

xx = an ASCII text string up to 63 bytes

Example: C1|S4|L1D>set circuit XX/YYYY/000000/111/CC/SEG

C1|S4|L1D>show circuit-ID

Circuit-ID: XX/YYYY/000000/111/CC/SEG

The default setting is 'blank' (no data entered).

Note: Use the **show circuit-ID** command to display the Circuit ID information for a device or port.

Command: Show Circuit ID

Syntax: show circuit-ID <cr>

Description: Displays the current Circuit ID (ifxtable or system table) for the device or port. Use the

set circuit-ID command to change the current Circuit ID information defined for a

device or port.

Example: C1|S4|L1D>set circuit XX/YYYY/000000/111/CC/SEG

C1|S4|L1D>show circuit-ID

Circuit-ID: XX/YYYY/000000/111/CC/SEG

Note: If no circuit ID has been defined via the set circuit-ID= command, nothing displays after the "Circuit-ID:".

Command: Status Check

Syntax: stat

Description: Displays the current chassis configuration.

Example:

```
C1|S4|L1D>stat
ION statck
        Chassis -- BPC
                [ 1] IONMM
                        Port 1
                        Port 2
                [ 3] C3230-1040
                        Port 1
                        Port 2
                [ 4] C6010-3040
                        Port 1
                        Port 2
                                level2 REM: S6010-1040
                                       Port 1
                                       Port 2
                [ 5] C3230-1040
                        Port 1
                        Port 2
                [ 7] C3210-1013
                        Port 1
                        Port 2
                [ 8] C3221-1040
                        Port 1
                        Port 2
                       Port 3
                [ 10] C3231-1040
                        Port 1
                        Port 2
                       Port 3
                [ 12] C2110-1013
                        Port 1
                        Port 2
                [ 14] C2210-1013
                        Port 1
                        Port 2
                  [ 22] IONPS-A
                        Temperature Sensor
                        Voltage Sensor
                        Power Sensor
                        Fan-1
                       Fan-2
                [ 23] IONPS-D
                       Temperature Sensor
                        Voltage Sensor
                        Power Sensor
                        Fan-1
                        Fan-2
C1|S4|L1D>
```

Command: TFTP Get

Syntax: tftp get iptype=<ww> ipaddr=<xx> remotefile=<yy> [localfile=<zz>]

Description: Gets (retrieves) a file from the default directory on the TFTP server and puts it in the IONMM

where:

ww = IP address format; valid choices are:

- ipv4 (32-bit address format)
- dns (domain name address format)

xx = IP address of the TFTP server where the file is located

yy = name of the file to "get"

zz = optional; name that the file is to be saved as on the IONMM or NID.

Example:

C1|S3|L1D>tftp get iptype=ipv4 ipaddr=192.168.1.30 remotefile=cert localfile=cert TFTP transferring... File transfer successful!

Command: TFTP Put

Syntax: tftp put iptype=<ww> ipaddr=<xx> localfile=<yy> [remotefile=<zz>]

Description: Puts (sends) a local file from the IONMM to the default directory on the TFTP server.

where:

ww = IP address format; valid choices are:

- ipv4 (32-bit address format)
- dns (domain name address format)

xx = IP address of the TFTP server where the file is to be sent

yy = name of the file to send ("put")

zz = optional; name the file is to be saved as on the TFTP server

Example:

C1|S4|L1D>tftp put iptype ipv4 ipaddr 192.168.1.30 localfile readme tftp put failed.

Command: TFTP Upgrade

Syntax: tftp upgrade iptype=(ipv4) ipaddr=ADDR remotefile=RFILE

Description: Upgrades IONMM card with IONMM firmware from a TFTP server. The TFTP

server must be configured and running and the remotefile must be in the proper

location (e.g., *C:\TFTP-Root*).

where:

xx = iptype=(ipv4), the TFTP server address type

yy = ipaddr=ADDR, the TFTP server address

zz = RFILE, the remote firmware file name

Example:

C1|S1|L1D>tftp upgrade iptype ipv4 ipaddr 192.168.1.30 remotefile 1-3-C3230-

1040.config

Processing...

Wrong firmware for upgrading!

C1|S1|L1D>tftp upgrade iptype ipv4 ipaddr 192.168.1.30 remotefile IONMM_0.6.5_AP.bin

Processing...

TFTP upgrade succeeded!

C1|S1|L1D>

Command: Reboot (Warm Start) the C6010

Syntax: reboot

Description: Performs a reboot ("cold start the system") of the device in the command line prompt.

Warning: Doing a reboot or restart of a NID or the IONMM may cause some configuration backup files to be lost and the USB or Telnet session to drop. Doing a reboot, restart or upgrade of the IONMM, a power restart of the chassis, or a reset to factory removes temporary files (e.g. configuration backup files, Syslog file). A Factory Reset also removes the permanent settings (e.g. configuration files, HTTPS certification file, SSH key).

Example 1 (C6010):

C1|S18|L1D>reboot

Warning: this command will restart system, connection will be lost and please login again!

login: ION
Password:private

Hello, this is ION command line (version 1.00).

Copyright 2009 Transition Networks.

C1|S1|L1D>

The HyperTerminal connection closes and the Windows Taskbar Notification area displays the message "A network cable is unplugged!."

To recover: 1. Close the Windows Taskbar message. 2. Disconnect and close HyperTerminal. 3. Re-open HyperTerminal. 4. Re-open the HT session. 5. Log back in to the x6010.

Example 2 (S6010):

C1|S4|L1AP2|L2P2>reboot

Warning: this command will restart system, connection will be lost and please login again! Warm start failed.

C1|S4|L1AP2|L2P2>

Reset System Uptime

Syntax: reset uptime

Description: Resets the System Up Time counter to zero, and immediately begins to increment.

Example: C1|S18|L1D>reset uptime

C1|S18|L1D>

Note: If you reset uptime on the connected (local) chassis device, the remote device's uptime counters are reset as well.

Note: Use the **show system info** command to display the current device uptime. **Note**: the **reset uptime** command is not available for the Power Supply modules.

Command: Reset to Factory Default Configuration

Syntax: reset factory

Description: Resets a card to its factory default configuration.

Warning: doing a reboot or restart of the IONMM or NID may cause some configuration backup files to be lost and the USB or Telnet session to drop. Doing a reboot, restart or upgrade of the IONMM, a power restart of the chassis, or a reset to factory removes temporary files (e.g. configuration backup files, Syslog file). A Factory Reset also removes the permanent settings (e.g. configuration files, HTTPS certification file, SSH key).

Example 1:

C1|S18|L1D>reset factory

Warning: this command will restart the specified card, connection will be lost! C1|S18|L1D>

The HyperTerminal connection closes and the Windows Taskbar Notification area displays the message "A network cable is unplugged!."

To recover: 1. Close the Windows Taskbar message. 2. Disconnect and close HyperTerminal. 3. Re-open HyperTerminal. 4. Re-open the HT session. 5. Log back in to the x6010.

Example 2:

C1|S4|L1AP2|L2D>reset factory

Warning: this command will restart the specified card, connection will be lost! C1|S4|L1AP2|L2D>

Command: Reset (Clear) All Ports Counters

Syntax: reset all ports counters

Description: Resets all counters on all ports of the specified Ethernet device. The device's counters

(RMON statistics counters, dot3 counters etc.) are reset to zero and begin incrementing

immediately.

Example: C1|S5|L1D>reset all ports counters

C1|S5|L1D>

Command: List All Commands

Syntax: list <cr>

Description: Displays all of the available CLI commands.

Example:

```
C1|S2|L1D>list
   go [c=<0-16>] [s=<0-32>] [l1ap=<1-15>] [l2ap=<1-15>] (l1p=<1-5>|l2p=<1-15>|l3p=<1-15>|
   15>|11d|12d|13d)
   home
   list
   prov get tftp svr addr
   prov set tftp svr type=(ipv4|dns) addr=ADDR
   quit
   reboot
   reset all ports counters
   reset factory
   reset uptime
   set circuit-ID=CIRCUIT
   set community read=COMMUNITY
   set community write=COMMUNITY
   set dbg level=<0-2>
   set dmi rx-power-preset-level=POWER
   set system name=NAME
   set taos transmit=(enable|disable)
   set tdm loopback oper=(init|stop)
   set tdm loopback type=(noloopback|phylayer)
   show card info
   show cardtype
   show circuit-ID
   show dmi info
   show firmware upgrade result
   show firmware-db update result
   show tdm config
   show tdm loopback capability
   show tdm loopback state
   show tdm port config
   stat
   tftp get iptype=(ipv4|dns) ipaddr=ADDR remotefile=RFILE [localfile=LFILE]
   tftp put iptype=(ipv4|dns) ipaddr=ADDR localfile=LFILE [remotefile=RFILE]
   tftp upgrade iptype=(ipv4|dns) ipaddr=ADDR remotefile=RFILE
   upgrade module
C1|S2|L1D>
```

Note that not all of the commands listed are necessarily operational on the x6010 models.

Section 7: Troubleshooting

General

This section provides basic and specific problem determination processes, and a description of problem conditions that may occur or messages that may be displayed. This section also documents ION system tests, x6010 jumpers, and describes where and how to get technical support.

IMPORTANT

For each procedure described in this section, do each step sequentially as indicated. If the result of a step causes the problem to be corrected, **do not** continue with the other steps in the procedure.

Basic ION System Troubleshooting

This basic process is intended to provide some high-level techniques that have been found useful in isolating ION problems. This process is not a comprehensive guide to troubleshooting the ION system. The intent here is to 1) avoid missing any important information, 2) simplify analysis of captured information, and 3) improve accuracy in finding and explaining problem causes and solutions.

This basic process applies to these ION system and related components:

- ION Chassis
- ION NIDs (SICs, or slide-in-cards)
- ION software (ION System Web interface or ION command line interface CLI).
- ION power supply
- ION Options (ION SFPs, ION LG Kit, etc.)
- Data cables, electrical cables, and electrical outlets
- Third party network equipment (circuit protection equipment, battery backup, 3rd party client or server software –TFTP, etc.)

When troubleshooting an ION system / network problem on site:

- 1. Document the operation taking place when the failure occurred.
- Capture as much information as possible surrounding the failure (the date and time, current configuration, the operation in process at the time the problem occurred, the step you were on in the process, etc.).
- 3. Start a log of your ideas and actions, and record where you were in the overall scheme of the system process (i.e., initial installation, initial configuration, operation, re-configuration, upgrading, enabling or disabling a major feature or function, etc.).
- 4. Write down the error indication (message, LED indicator, etc.). Take a screen capture if the problem displayed in software.
- 5. Start with the most simple and work towards the more complex possible problem causes (e.g., check the network cables and connections, check the device LEDs, verify the NIDs are seated properly, view the CLI **show** command output, run ION System Tests (page 203), In-band Loopback Code Detect Procedure (page 210), and check DIP Switch and Jumper Settings (page 211).
- 6. Write down your initial 2-3 guesses as to the cause of the problem.
- 7. Verify that the TN product supports the function you are trying to perform. Your particular TN product or firmware version may not support all the features documented for this module. For

the latest feature information and caveats, see the release notes for your particular device/system and firmware release.

- 8. Compare the results of an operation via each user interface (Web interface, CLI, Focal Point 3).
- 9. Use the Web interface or command line interface (CLI) to obtain all possible operating status information (log files, test results, **show** command outputs, counters, etc.)
- 10. Use the ION system manual procedure to retry the failed function or operation.
- 11. For the failed function or operation, verify that you entered valid parameters using the cursor-over-help (COH) and/or the ION system manual.
- 12. Based on the symptoms recorded, work back through each step in the process or operation to recall a point at which the problem occurred, and examine for a possible failure point and fixe for each.
- 13. Document each suspected problem and attempted resolution; eliminate as many potential causes as possible.
- 14. Isolate the 1-2 most likely root causes of what went wrong, and gain as much information as you can to prove the suspected cause(s).
- 15. If you find a sequence of actions that causes the problem to recur, replicate the full sequence several times and document it if possible.
- 16. Review your system log information and add any other comments that occur to you about what has taken place in terms of system behavior and suspected problem causes and solutions.
- 17. Review the "Recording Model Information and System Information" section on page 240 before calling TN for support.

Error Indications and Recovery Procedures

The types of indications or messages reported include:

- LED fault and activity displays (page 129)
- Problem Conditions (page 130)
- CLI Messages (page 143)
- Web Interface Messages (page 145)
- Webpage Messages (page 154)
- Config Error Log (config.err File) Messages (page 160)
- Third Party Tool Messages (HyperTerminal, Ping, and Telnet Messages) (page 169)
- T1 Error Events and Alarm Conditions (page 219)

These message types and their recommended recovery procedures are covered in the following subsections.

LED Fault and Activity Displays

Refer to this section if the LEDs indicate a problem. For any LED problem indication, review the "Front Panel Connections and LEDs" section on page 54, and then perform the following steps.

- 1. Check the power cord connections and power outlet.
- 2. Check the data cables for obvious problems, incorrect cable type, incorrect wiring, etc.
- 3. Make sure the USB cable is properly connected.
- 4. Check the power supply voltages (see related documentation).
- 5. Verify that the ION system devices have the latest firmware versions. Download the latest firmware version and upgrade as necessary.
- 6. Check if other network devices are working properly.

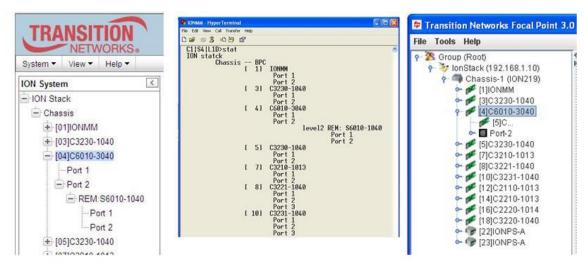
Power (PWR) LED is off (not lit):

- 1. Check at both ends for a loose power cord.
- 2. Check for a power supply failure. Replace power supply if failed.
- 3. Make sure all circuit protection and connection equipment and devices are working.
- 4. Verify that the ION system power supply is within operating range.
- 5. Remove the card from the chassis and re-insert it. Replace if failed.
- 6. Make sure the mode displayed matches the hardware setting on the device. See the "Jumper Settings" section on page 212.

SDF (Signal Detect/Fiber) LED off (not lit):

- 1. Check the CL FL Switch setting.
- 2. Check fiber cables for proper connection.
- 3. Verify that the TX and RX cables are connected to RX and TX ports, respectively, on the far end device.
- 4. Check if other network devices are working properly.
- 5. Remove the suspect x6010 from the chassis and re-insert it.

SDC (Signal Detect/Copper) LED off (not lit):


- 1. Check the **CL FL** Switch setting.
- 2. Check twisted pair cables for proper connection.
- 3. Check RJ-45 connectors and cables for correct twisted pair cable configuration.
- 4. Check integrity of device attached to the x6010 by twisted pair cable.
- 5. Check if other network devices are working properly.
- 6. Remove the suspect x6010 from the chassis and re-insert it.

TX or RX LED off (not flashing):

- 1. Check the data cables for obvious problems, incorrect cable type, incorrect wiring, etc.
- 2. Check if other network devices are working properly.
- 3. Remove the card from the chassis and re-insert it.
- 4. Verify that the ION system devices have the latest firmware versions.
- 5. Download the latest firmware version and upgrade as necessary.

Problem Conditions

You can access the x6010 via the Web interface, Focal Point, and the CLI. Comparing the results of an operation via each user interface is an initial step in troubleshooting.

ION System - Web Interface

ION System - Command Line Interface (CLI

Focal Point - Web Interface

- 1. Verify the overall ION system configuration.
- 2. Compare the ION configuration via each user interface (Web interface, CLI, Focal Point 3).
- 3. Locate the specific error condition or message in the following sections.

Cannot access the NID via USB port

- 1. If you can access the IONMM, continue with step 2 below. If you cannot access the IONMM, see the IONMM User Guide.
- Check that the syntax for the go command is correct. The go command format is: go [c=CHASSIS] [s=SLOT] [l1ap=PORT] [l2ap=PORT] (l1p=PORT|l2p=PORT|l3p=PORT|l1d|l2d|l3d)
- 3. Power cycle the NID.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot access the NID via Telnet

1. If you can access the IONMM, continue with step 2 below. If you cannot access the IONMM, see the IONMM User Guide.

- Check that the syntax used for the go command is correct. The go command syntax is: go [c=CHASSIS] [s=SLOT] [l1ap=PORT] [l2ap=PORT] (l1p=PORT|l2p=PORT|l3p= PORT|l1d|l2d|l3d)
- 3. Power cycle the NID.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot access the NID via the Web

- 1. If you can access the IONMM, continue with step 2 below. If you cannot access the IONMM, see the IONMM User Guide.
- 2. Make sure that RADIUS client and HTTPS state are all set to disabled.
- 3. Power cycle the NID.
- 4. If the NID is a remote, power cycle the local NID.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot activate IP-based management

- 1. Verify that the IP, gateway, and subnet mask are configured correctly.
- 2. With DHCP enabled, DHCP could have failed leaving the system with the old static IP configuration. Check the configuration via the USB port.
 - a) Access the IONMM through a USB connection (see "Starting a USB Session" on page 41).
 - b) At the command prompt, type: **show ip-mgmt config**.
 - c) Press **Enter**.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot upgrade modules

See Upgrade fails on page 177.

Cannot upload upgrade files

See Upload fails on page 177.

Telnet connection is lost after a CLI command is executed

- 1. If you can connect to the IONMM through the Web interface (see "Starting the Web Interface" on page 45), go to step 3 below. If you cannot connect to the IONMM through the Web interface, continue with step 3 below.
- 2. Check the following:
 - the IONMM is seated properly in the chassis
 - the IONMM is powered up
 - · the network cable is seated
 - the network is operational
- 3. For all modules (slide-in and remote) check the following:
 - module is properly seated/connected
 - · module is powered up
- 4. Cycle power for the module in question. **Note**: for slide-in cards, pull the module out so it is no longer connected to the backplane, then slide the module back in, ensuring that it is firmly seated.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

Trap Server does not record traps

- 1. Ensure the Trap Server application is running.
- 2. SNMP traps may be blocked by a router or firewall. Consult your Network administrator to determine if this is the case.
- 3. Check that the correct SNMP trap manager IP address has been defined for the module.
 - For Web Interface go to the SNMP Configuration section on the MAIN tab.
 - For CLI at the device level, type: show snmp config.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Upgrade fails

- 1. Check the following:
 - The correct module(s) has been selected.
 - The module selected is listed in the **Card Type** column on the **Firmware Database** sub-tab.
 - A hierarchy conflict does not exist (i.e., trying to upgrade a level 2 module and its level 1 module at the same time).
 - The modules are powered on.
- 2. Wait two minutes, and then retry the operation. If the operation still fails, continue with step 3 below.
- 3. Reboot the IONMM and all modules in the upgrade stream.
- 4. Retry the operation. **Note:** you will have to do another upload of the upgrade files.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

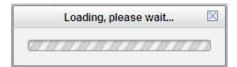
Upload fails

- 1. Check the following:
 - The IONMM is powered on.
 - The IP address of the TFTP server is correct.
 - The TFTP server is online and available.
 - The correct file name, **db.zip**, is specified (including the .zip extension for Windows XP). If using Windows 7, name the file just "**db**".
 - The **db.zip** file is in the default directory on the TFTP server.
 - The **db.zip** (or **db**) file contains the db.idx file and the upgrade files.
 - The db.idx file is formatted correctly ("Creating the Database Index and Archive Files" on page 148).
- 2. Wait three minutes then retry the operation. If the operation still fails, continue with step 3.
- 3. Reboot the IONMM.
- 4. Retry the upload operation.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

USB connection resets after a CLI command is executed

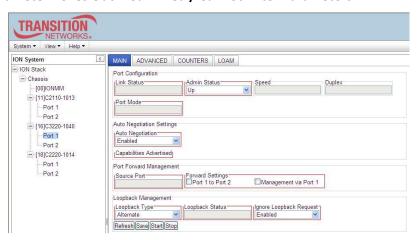
1. If you can connect to the IONMM through the Web interface (see "Starting the Web Interface" on page 45), go to step 4 of "Telnet connection is lost after a CLI command is executed" on page 168. If you cannot connect to the IONMM through the Web interface, continue with step 2 below.

- 2. Check the following:
 - · the IONMM is seated properly in the chassis
 - the IONMM is powered up
 - · the network cable is seated
 - the network is operational
- 3. For all modules (slide-in and remote) check the following:
 - · the module is properly seated/connected
 - the module is powered up
- 4. Cycle power for the module in question.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.


Configuration Mode Mismatch

On the device **MAIN** tab, in the **System Configuration** section in the **Configuration Mode** box, the mode displayed does not match the hardware setting on the device.

The device may have a jumper or switch that disables software management of the device. When Configuration Mode is **hardware**, the devices take some of the configurations from DIP switches or jumpers on the device. In **software** mode, configuration is controlled by management.


- 1. Refer to the "DIP Switches and Jumper Settings" section on page 212 for details on hardware mode configuration.
- 2. Contact Transition Networks for more information. See Contact Us on page 241.

loading, please wait ... Displays continuously

- 1. Wait for one or more minutes for discovery to complete.
- 2. Click the ⊠ icon to close the message.
- 3. Check the parameter entries and retry the operation.
- 4. Click the **Refresh** button and try the operation again.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

Parameter Boxes Outlined in Red / Cannot Enter Parameters

- 1. Check if the device is physically connected and powered on.
- 2. If the "Getting values failed" message also displays, refresh the device by clicking the Refresh key.
- 3. Collapse and then expand the ION System tree (i.e., fold and then unfold the "ION Stack" node in the left tree view) to refresh.
- 4. Cycle power for the x6010 in question.
- 5. Reboot the x6010 by clicking the **Reboot** key. See the Reboot section on page 285. Check if the parameter boxes are again outlined in black and that you can enter parameters.
- 6. Upgrade the device(s) to the latest software version.
- 7. If the problem persists, contact Technical Support. See Contact Us on page 241.

Red Box Condition

When certain operations (e.g., a reboot) are finished, some devices (usually remote devices) will show the error condition of a "red box" around items like IP address, Trap Manager IP addresses, and/or DNS Entries. The 'red box' condition occurs while the devices are resetting; this condition can continue several minutes after the reboot. Until the system is ready to be fully managed, certain fields may display within "red boxes". The "red boxes" will disappear when the system is ready to be fully managed.

- 1. Wait a couple of minutes for the current operation to complete, and then continue operation.
- 2. Check the devices' firmware versions. For example, a NID has only certain items 'red boxed'. The IONMM in this case is at latest version and shows certain new functions on the GUI, while the NID is at an older version and shows the newer functions as 'red boxed'. Since the older version of NID does not have knowledge of the new features, it will not respond to the IONMM for the new items, and the IONMM shows those items as 'red boxed'. Upgrade the devices to the latest software version.
- 3. Reboot the system. See the "Reboot" section on page 285 for more information.
- 4. Contact Transition Networks for more information. See Contact Us on page 241.

TFTP Server Address is empty or invalid!

- 1. On a device **MAIN** tab, in the **TFTP Settings** section, you clicked the **Save Server Address** button with no TFTP Server Address entered, or with an invalid TFTP Server Address entered.
- 2. Enter a valid TFTP Server Address and click the Save Server Address button.

Windows XP Cannot Find Drivers For My Device

This error can occur if the information programmed into the device EEPROM do not match those listed in the INF files for the driver. If they do not match, the driver cannot be installed for that device without either reprogramming the device EEPROM or modifying the INF files.

1. Contact Transition Networks for more information. See Contact Us on page 241.

Windows XP Forces a Reboot after Installing a Device

This problem can occur if an application is accessing a file while the New Hardware Wizard is trying to copy it. This usually occurs with the FTD2XX.DLL file.

- 1. Select not to restart the computer and then unplug and re-plug the device. This may allow the device to function properly without restarting.
- 2. Restart the computer to allow the device to work correctly.
- 3. Contact Transition Networks for more information. See Contact Us on page 241.

Driver Installation Fails and Windows XP Gives Error Code 10

Windows error code 10 indicates a hardware error or failed driver installation. This error may appear if a device has insufficient power to operate correctly (e.g. plugged into a bus powered hub with other devices), or may indicate a more serious hardware problem. Also, it may be indicative of USB root hub drivers being incorrectly installed.

1. Contact Transition Networks for more information. See Contact Us on page 241.

Windows XP Displays an Error and then Terminates Installation

If the following screen is displayed with this message, Windows XP has been configured to block the installation of any drivers that are not WHQL certified.

To successfully install the device, you must change the driver signing options to either warn or ignore to allow the installation to complete.

- 1. To change the current driver signing setting, in Windows XP, go to "Control Panel\System", click on the "Hardware" tab and then click "Driver Signing".
- 2. Select the desired signing option.

For other USB Driver / OS Messages (Win2K, Vista, Windows 7, Linux, Mac) refer to the separate document with Driver / OS install, uninstall and troubleshooting information.

Kernel panic - not syncing: Aiee, killing interrupt handler!

After a successful CLI command entry, the system crashes and the message displays. For ex-ample:

- 1. Upgrade to the S6010 bootloader and Uboot was successful.
- 2. The S6010 Web interface HTTP shows as failed.
- 3. Log into the USB console, and enter the command **show ip config**. For example:

```
>show ip config

IP management configuration:
-----

IP management state no such object.
>show i
```

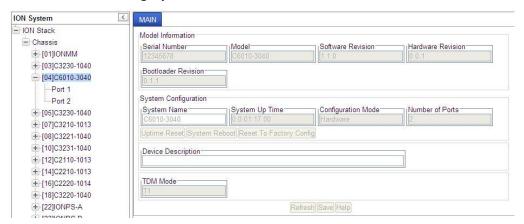
4. After entering "**show i**", the system crashes.

A 'kernel panic' is an error from which the OS cannot quickly or easily recover. It applies primarily to Unix-based systems. In other systems, the equivalent of a kernel panic is known as blue screen of death, sad Mac, or bomb. In Windows 3.x, this sort of error was called a 'general protection fault'.

To recover:

- 1. Check for these kernel panic causes:
 - a. An inappropriate attempt by the OS to access or write to memory,
 - b. A software bug or malware,
 - c. Failure or improper installation of RAM chips, hard disk damage or data corruption, or
 - d. A defective microprocessor chip or incompatible device drivers.
- 2. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot find new IP address DHCP issued address is not being displayed IP Address Wrong


If the DHCP client is enabled on the IONMM **MAIN** page, there is no easy way to determine the new IP address. If DHCP client status set to "enable", the value of "ip address" shows the last IP address, not the current dynamic allocation IP address.

When a "**show ip-mgmt config**" command is entered on the CLI, the previous "fixed" IP address is still returned. If a Fully Qualified Domain Name is used on any of the IONMM pages to access other devices (TFTP, SNTP, or Radius), or to ping another PC, they will fail because of an internal sync problem when getting the IP settings from the ION system when the DHCP client is enabled.

- 1. Disable the DHCP client and set the DNS server; the problem resolves. (If you enable the DHCP client and then set the DNS servers via the Web interface, this issue may occur due to the internal sync problem noted above).
- 2. Contact Transition Networks for more information. See Contact Us on page 241.

Cannot make x6010 configuration changes from the Web interface GUI is not accessible

Web interface screens are all grayed out

With the x6010 in Hardware mode, you cannot make x6010 configuration changes from the Web interface, as the screen fields are all grayed out.

- 1. Change the x6010 PCB J8 jumper setting. Jumper J8 sets the x6010 PCB's Hardware / Software mode. Use the shorting plug to jumper (short) pins 2 and 3 for Software Mode. See "Jumper Settings" on page 30.
- 2. Collapse and then expand the ION System tree (i.e., fold and then unfold the "ION Stack" node in the left tree view) to refresh.
- 3. Select the x6010 again, and continue operation.
- 4. Use CLI commands for configuration and operation. See "Section 6: Command Line Interface (CLI) Reference" on page 120.
- 5. Contact Transition Networks for more information. See Contact Us on page 241.

Discovery not taking place for remote S6xxx device ION Can't Discover Remote x6xxx Remote ION x6xxx device does not display System cannot discover remote ION x6xxx device

The local (chassis-based) C6xxx does not show a connection to the remote S6xxx device. The ION Chassis view displays the local (chassis-based) C6xxx but when expanded, does not show the remote S6xxx device.

This is sometimes caused by the local and remote ION devices having different firmware versions, or different DIP switch settings.

- 1. Make sure the remote x6xxx is powered on.
- 2. Make sure the local and remote S6xxx devices have the same DIP switch settings and jumper settings. If necessary, change DIP switch settings on one or both x6xxx devices so that the local and remote devices match. See "Jumper Settings" on page 31 and "DIP Switch Settings" on page 33.
- 3. Make sure the local and remote S6xxx devices have the same (latest) Firmware versions. If necessary, upgrade the firmware version on one or both x6xxx devices so that the local and remote devices match. See "Upgrade the IONMM and/or NID Firmware" on page 108.
- 4. Click the Refresh button.
- 5. Contract and then expand the ION Stack tree.
- 6. Unplug and then re-plug the USB cable at the IONMM.
- 7. Unplug and then re-plug the Ethernet cable at the IONMM.
- 8. Log out of the ION system and then log back in.

CLI Messages

The following are messages that may appear during CLI (Command Line Interface) operations.

Ambiguous command

A. This message indicates either a) the input for one of the parameters is incorrect, or b) a hyphen is missing between two parts of the command.

- 1. Verify the CLI command syntax.
- 2. Retry the operation.
- **B**. You typed part of a valid CLI command and pressed **Enter** before completing the command syntax. For example, if you type

C1|S7|L1D>add v

and then press the **Enter** key, the message "% Ambiguous command." displays.

- 1. Type the part of the command that failed (add v in the example above), type a question mark (?), and the press Enter. The valid commands that start with the part of the command you initially entered are displayed.
- 2. Verify the CLI command syntax.
- 3. Retry the operation.

C. The system was unable to resolve the desired command based on the portion of the command entered. For example, you entered the following: C1|S7|L1D>set dot1

- 1. Verify the command syntax.
- 2. Retry the CLI command syntax.
- 3. See "Section 6: Command Line Interface (CLI) Reference" on page 124.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Bad advertisement capability!

This message indicates that the capabilities specified for the Set Ethernet Port Advertisement Capability command are not valid choices.

- 1. Verify the command syntax.
- 2. Retry the operation. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot get link pass through information on this card

This message indicates that a link pass through (LPT) CLI command was entered for an IONMM. CLI commands for LPT operations are only valid for slide-in modules other than the IONMM. For example:

C1|S7|L1D>show lpt config
Cannot get link pass through information on this card!
C1|S7|L1D>

1. Use the **go** command to change from the IONMM to the specific slide-in module. The **go** command format is:

go [c=CHASSIS] [s=SLOT] [l1ap=PORT] [l2ap=PORT] (l1p=PORT|l2p=PORT|l3p=PORT|l1d|l2d|l3d)

- 2. Retry the operation. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot get LOAM configuration on this port!

This message indicates that a port level command was entered for the IONMM but the command is only valid for the other types of slide-in modules.

1. Use the **go** command to change location of where the command operates. The **go** command format is:

go [c=CHASSIS] [s=SLOT] [l1ap=PORT] [l2ap=PORT] (l1p=PORT|l2p=PORT|l3p=PORT|l1d|l2d|l3d)

- 2. Retry the operation. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot get port security on this port!

This message indicates that a port level command was entered for the IONMM but the command is only valid for the other types of slide-in modules.

1. Use the **go** command to change location of where the command operates. The **go** command format is:

go [c=CHASSIS] [s=SLOT] [l1ap=PORT] [l2ap=PORT] (l1p=PORT|l2p=PORT|l3p=PORT|l1d|l2d|l3d)

- 2. Retry the operation. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Command incomplete

This message indicates that not all of the required fields were entered for the CLI command.

1. Verify the command syntax. Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.

- 2. Retry the operation. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Could not open connection to the host on port 23. Connection failed.

This message indicates that the Telnet server and client are configured for different ports. For Telnet operations the default port is 23.

- 1. Ensure that the Telnet port is set to 23 for both the server and the client. This will require someone with administrative rights in order to make a change.
- 2. Add the port number to the Telnet command. Example:

Telnet <ipaddr> <port#>

3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Error: this command should be executed on a device

This message indicates that the CLI command was entered for a port and it only applies to a device.

- Use the go command to change location of where the command operates. The format is: go [c=CHASSIS] [s=SLOT] [l1ap=PORT] [l2ap=PORT] (l1p=PORT|l2p=PORT|l3p= PORT|l1d|l2d|l3d)
- 2. Retry the operation. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Error: this command should be executed on a port

This message indicates that the CLI command was entered for a card and it is only applicable for a port.

- 1. Use the **go** command to change location of where the command operates. The **go** command format is:
 - go [c=CHASSIS] [s=SLOT] [l1ap=PORT] [l2ap=PORT] (l1p=PORT|l2p=PORT|l3p=PORT|l1d|l2d|l3d)
- 2. Retry the operation. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Fail to get MAC address!

This message indicates that communications to the module cannot be established.

1. Verify that the correct hierarchy has been specified in the command (see "Managing Slide-In and Remote Modules Using CLI Commands" on page 49).

- 2. For all modules (slide-in and remote) check the following:
 - · module is properly seated/connected
 - · module is powered up
- 3. Wait 60 seconds then retry the operation.
- 4. Cycle power for the module in question. **Note:** for slide-in modules, pull the module out so it is no longer connected to the backplane, then slide the module back in, ensuring that it is firmly seated.
- 5. Retry the operation. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 6. If the problem persists, contact Technical Support. See Contact Us on page 241.

Fail to get port type!

This message indicates that a port level command was entered for the IONMM but the command is only valid for the other types of slide-in modules.

- 1. Use the **go** command to change location of where the command operates.
- 2. Retry the operation. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Failed to set DHCP client state!

This message may indicate a problem in the IONMM DHCP setup / configuration.

- 1. Verify the operation in the "Assigning a Dynamic IP Address" section of the IONMM User Guide.
- 2. Retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Failed to set current time

Failed to set SNTP state!

Failed to set SNTP daylight savings time state!

Failed to set timezone!

Failed to set SNTP server

Failed to set SNTP server!

Failed to set system contact

Failed to set system name

Failed to set system location!

These messages indicate a problem in the IONMM SNTP setup / configuration.

- 1. Verify the operation in the "Configuring SNTP" section of the IONMM User Guide.
- 2. Retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Incomplete location command!

Incomplete location parameters, lack of level1 attachment port!

This message indicates that one or more parameters for the **go** command are missing. The **go** command was entered to set location parameters, but the module, slot and/or port value(s) were not included in the command string.

The **go** command can operate on a local or remote card/port, and you must give the last parameter to specify the target is a port or device. For example, the input go c=1 s=14 does not include the port parameter, so the CLI module displays "Incomplete location parameters".

- 1. Verify the command syntax.
- 2. Re-enter the **go** command and be sure to include all of the location parameters:

gp[c=CHASSS][s=SLOT][Map=L0APORT][12ap=L1APORT](Mp=PORT|12p=PORT|13p=PORT|1dd|12d|13d)

3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Invalid condition value: xxxx

This message indicates that the input for the value= parameter on the command in not valid.

- 1. Verify the value being input; it must match with the value input for type=.
- 2. Retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Invalid location parameters, cannot find the physical entity!

This message indicates that the system cannot detect the presence of the device or port specified in the **go** command.

- 1. Verify that the correct hierarchy has been specified in the command (see "Managing Slide-In and Remote Modules Using CLI Commands" on page 49).
- 2. For all modules (slide-in and remote) check the following:
 - · module is properly seated/connected
 - · module is powered up
- 3. Wait 60 seconds then retry the operation.
- 4. Cycle power for the module in question. **Note:** for slide-in modules pull the module out so it is no longer connected to the backplane, then slide the module back in, ensuring that it is firmly seated.
- 5. Retry the operation.
- 6. If the problem persists, contact Technical Support. See Contact Us on page 241.

Invalid user!

This message indicates that the specified user is not valid.

- 1. Verify the user.
- 2. Retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Login incorrect

This message indicates that either the login or password entered while trying to establish a USB or Telnet connection is incorrect.

- 1. Verify the login/password. **Note:** the login and password are case sensitive. The default login is **ION** and the default password is **private**.
- 2. Retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

No DMI support on this port!

This message indicates that you entered a DMI command for a port that does not support DMI.

- 1. Verify that the port and SFP support DMI. For Transition Networks NIDs and SFPs, the model number will have a "D" at the end.
- 2. Retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

There is no matched command

This message indicates that there is no such command available on this system.

- 1. Verify the command syntax.
- 2. Retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Unable to open xx. Please check your port settings.

This message indicates that HyperTerminal no longer recognizes which COM port to use for its connection.

- 1. Check that the USB cable is connected to the management station and the IONMM or NID.
- 2. Check that the COM port is listed for the device manager on the management station.
 - a) On the desktop, right-click on **My Computer**.
 - b) Select Manage.
 - c) Click **Device Manager**.
 - d) In the right panel, expand the list for Ports (COM & LPT).
- 3. Is the COM port in the list?

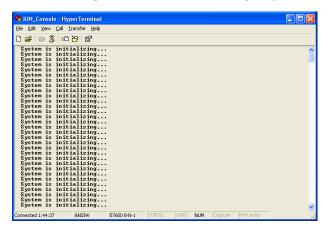
Yes	No
Continue with step 4.	Restart the Management station (PC).

- 4. In the HyperTerminal window, select File>Properties.
- 5. Check that the correct port is listed in the **Connect using** field.
- 6. Restart the Management station (PC).
- 7. Reboot the IONMM or NID.
- 8. If the problem persists, contact Technical Support. See Contact Us on page 241.

Error, you should first give full location parameters

The location value is incomplete; it is missing the module, slot and/or port value(s). This message can display when a device-level command is entered (e.g., **show lpt config**).

When you change a bigger container, the value of smaller object is cleared. For example, originally the operated object is Chassis=1, slot=4, L1AP=1 L2AP=2 L3D, and then when the command chassis 3 is entered. This automatically sets the value of module, slot and port to 0.


If the value of module, slot and port are not set in later commands, and then you run a device-level command (e.g., **show lpt config**), this error message displays.

Enter the **go** command and be sure to include all of the location parameters.

go[c=CHASSS][s=SLOT][11ap=LOAPORT][12ap=L1APORT](11p=PORT|12p=PORT|12p=PORT|11d|12d|13d)

System is initializing...

CLI is receiving continuous error message "system is initializing..."

- 1. Wait for a few minutes for the message to clear.
- 2. Cycle power to the IONMM.
- 3. Retry the operation.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

This command is only available on <x6010> card!

- 1. Verify the command entered is the one you want.
- 2. Verify that the device for the command entered can support the function of the command (e.g., SOAM functions / commands are only supported by model S323x / C323x NIDs).
- 3. Retry the operation (e.g., type **show soam port** and press **Enter**).
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Error: this command should be executed on a device!

- 1. Verify the command entered is the one you want.
- 2. Change to the device level; enter the **home** command, or enter the **go** command with all of the location parameters (chassis / slot / port).
- 3. Retry the operation from the device level prompt (*\$6010>*).
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Error: this command should be executed on a port!

- 1. Verify the command entered is the one you want.
- 2. Change to the desired port; enter the **go** command with all of the location parameters (chassis / slot / port).
- 3. Retry the operation from the port (i.e., type **show fwd portlist** and press **Enter**).
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Unknown command!

The command you entered is not supported, or you entered the wrong command format / syntax.

- 1. Verify the CLI command syntax.
- 2. Retry the operation.
- 3. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

There is no matched command.

The command you entered is not supported, or you entered the wrong command format / syntax.

- 1. Verify the CLI command syntax.
- 2. Retry the operation.
- 3. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Error location parameter number!

The **go** command you entered had an invalid or missing parameter.

1. Enter the **go** command with all of the location parameters (chassis / slot / port) in the format:

```
go [c=CHASSIS] [s=SLOT] [11ap=PORT] [12ap=PORT] (11p=PORT | 12p=PORT | 13p=PORT | 11d | 12d | 13d)
```

tftp get: set address type failed.

tftp put failed.

tftp transfer failed!

- 1. The attempted firmware upgrade via the **tftp upgrade** command was unsuccessful.
- 2. Verify the CLI command syntax.
- 3. Verify the firmware version.
- 4. Be sure the TFTP server is configured and running.
- 5. Check that the remotefile is in the proper location (e.g., the file x6010.bin.0.5.4 is at C:\TFTP-Root).
- 6. Retry the operation. See the **tftp upgrade** command in "Section 6: Command Line Interface (CLI) Reference" on page 124.
- 7. If the problem persists, contact Technical Support. See Contact Us on page 241.

Fail to transfer the file!

The file transfer attempt failed. The command you entered to do a tftp file transfer was unsuccessful (e.g., tftp get or tftp put or tftp transfer).

- 1. Check the command syntax. See "TFTP Commands" page on page 157.
- 2. Make sure the TFTP server is configured and running.
- 3. Verify the filename to be transferred and the IP address of the TFTP server.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Redundancy is not supported on this card!

The attempt to set or show fiber redundancy failed. For example, you entered the command **show redundancy info**, but the device does not support fiber redundancy.

- 1. Verify that the NID you entered the command on supports this function (must have at least 2 fiber ports).
- 2. Retry the operation on a card that supports this function. See the "Fiber Redundancy Commands" section on page 104.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Invalid user!

You entered a show command, but specified the wrong user (e.g., you typed admin instead of root).

- 1. Retry the operation using the correct user information.
- 2. If the problem persists, contact Technical Support. See Contact Us on page 241.

Upgrade is only supported on IONMM card!

You entered a firmware *upgrade* or firmware *update* command from a device other than the IONMM. For example:

- C1|S3|L1D>show firmware upgrade result
- C1|S3|L1D>show firmware-db update result
- C1|S3|L1D>show upgrade firmware file
- C1|S3|L1D>update firmware-db file cert
- C1|S3|L1D>upgrade module
- 1. Make sure of the command you want to enter. See "Firmware Upgrade Commands" on page 167.
- 2. Use the **home** command to go to the IONMM device.
- 3. Re-enter the firmware upgrade command from the IONMM.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot set bandwidth alloc type on this card!

You entered the command **set bw alloc-type=countAllLayerx** on a card that does not support it. For example:

C1|S7|L1P1>set bw alloc-type countAllLayer2

Cannot set bandwidth alloc type on this card!

- 1. Verify if the card supports bandwidth allocation.
- 2. Use the **go** command to switch to a different card and switch to the port level.
- 3. Verify the command entry. See "Bandwidth Commands" on page 53.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot set ingress and egress rate on this card!

You entered the command **set irate=xx erate=xx** on a card that does not support it. For example:

C1|S7|L1P1>set irate noLimit erate noLimit

Cannot set ingress and egress rate on this card!

- 1. Verify if the card supports rate limiting. Try the syntax set irate=unLimit erate=unLimit.
- 2. Use the **go** command to switch to a different card and switch to the port level.
- 3. Verify the command entry. See "Bandwidth Commands" on page 53.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

DMI is only supported on FIBER port!

You entered the command **show dmi info** on a card that does not support it. For example:

```
C1|S7|L1P1>show dmi info
DMI is only supported on FIBER port!
```

- 1. Verify if the card supports DMI.
- 2. Use the **go** command to switch to a different card port supporting Fiber.
- 3. Verify the command entry. See "DMI Commands" on page 55.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Link OAM is not supported on this card!

You entered the command **show loam rx loopback control** on a card that does not support it. For example:

C1|S7|L1P1>show loam rx loopback control

Link OAM is not supported on this card!

- 1. Verify if the card supports loopback.
- 2. Use the **go** command to switch to a different card port supporting loopback.
- 3. Verify the command entry. See "LOAM Commands" on page 58.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot clear loopback counters on this card!

Cannot set administrate state on this port!

Cannot set advertisement capability on this port!

Cannot set autocross on this card!

Cannot set auto negotiation state on this port!

Cannot set Ethernet port speed for this card!

Cannot set Ether port duplex mode on this card!

Cannot set far end fault on this card!

Cannot set filter unknown dest multicast frames on this port!

Cannot set filter unknown dest unicast frames on this port!

Cannot set pause on this port!

Cannot set source address lock action on this port!

You entered a command (e.g., **clear loopback counters**) for a function not supported on the card or port.

- 1. Verify if the card supports the desired function. See Table 3 in the section "Ethernet Port Commands" on page 64.
- 2. Use the **go** command to switch to a different card port supporting loopback.
- 3. Verify the command entry.
- **4.** If the problem persists, contact Technical Support. See Contact Us on page 241.

No Time-domain reflectometer support on this card!

Cannot get port security configuration on this port!

Fail to get MAC control frames statistics!

Fail to get auto-negotiation state!

Cannot show forwarding port list on this card!

Cannot show slot info on this card!

Cannot show USB port state on this card!

Cannot show USB port configure on this card!

Cannot show TP port cable length on this card!

Cannot set management VLAN on this card!

Cannot clear counters on this port!

Cannot reset all ports' counters on this cards!

Cannot set aging time on this card!

Cannot show aging time on this card!

You entered a command for a function not supported on the card. For example:

C1|S7|L1P1>clear ether all counters

Cannot clear loopback counters on this card!

- 1. Verify if the card supports the desired function. See Table 3 in the section "Ethernet Port Commands" on page 64.
- 2. Use the **go** command to switch to a different card port supporting loopback.
- 3. Verify the command entry. The command functions may include 1) admin, 2) adv-cap, 3) autocross, 4) autoneg, 5) duplex, 6) fef, 7) filter-unknown-multicast, 8) filter-unknown-unicast, 9) loopback, 10) pause, 11) speed, and 12) src-addr-lock, 13) tdr, 14) ether security config, 15) fwddb, etc.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

Fail to get system name!

You entered a command for system information, but the information on the card was not available. For example:

C1|S10|L1D>**show card info** Fail to get system name!

- 1. Try entering the **show cardtype** command.
- 2. Select the MAIN tab > System Configuration section > System Name field, and verify the name and for the device.
- 3. Use the set system name command to enter the **System Name** information (e.g., **set system name**=NAME).
- 4. Remove and reset the card.
- 5. Try the operation again.
- 6. If the problem persists, contact Technical Support. See Contact Us on page 241.

Set system name timeout.

You entered a command to define system information, but the information on the card was not accepted.

For example:

C1|S10|L1D>set system name C3231 Set system name timeout.

- 1. Use the set system name command to enter the System Name information (e.g., **set system name=NAME**) without any special characters (e.g., without the ! or # or % or & characters).
- 2. Remove and reseat the card.
- 3. Try the operation again.
- 4. Select the **MAIN** tab > **System Configuration** section > **System Name** field, and verify the name and for the device.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

System is busy, please retry this command later!

You entered a **show** or **set** command, but the command was not accepted by the system. For example:

C1|S10|L1D>show https config
System is busy, please retry this command later!
C1|S10|L1D>

- 1. Wait 1-2 minutes and then retry the command.
- 2. Reboot the system and then retry the command.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Get HTTPS state no such object.

IP management state no such object.

You entered a **show** or **get** command, but the command was not accepted by the system. For example:

- 1. Verify that the command is supported.
- 2. Wait 1-2 minutes and then retry the command.
- 3. Retry the command with different parameters or use the go command to switch to a device that supports the desired command.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Warning: this command will restart system, connection will be lost and please login again! Warm start failed.

You entered a reboot command, but the reboot was unsuccessful.

- 1. Wait 1-2 minutes and then retry the command.
- 2. If the problem persists, contact Technical Support. See Contact Us on page 241.

4 packets transmitted, 0 packets received, 100% packet loss

The attempted ping command failed. For example:

PING 192.168.1.10 (192.168.1.10): 56 data bytes --- 192.168.1.10 ping statistics --- 4 packets transmitted, 0 packets received, 100% packet loss

- 1. Verify the IP address.
- 2. Check the cable connection.
- 3. Refer to the **Ping** command section.
- 4. Retry the command.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

Ping command can only be used on management card!

The attempted ping command was not accepted by the system. For example:

C1|S5|L1D>ping 192.168.1.30

Ping command can only be used on management card!

- 1. Use the **go** command to switch to the IONMM card.
- 2. Refer to the Ping command section.
- 3. Retry the command.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Only 100M fiber port can set far end fault!

The attempted far end fault command was not accepted by the system. For example:

C1|S16|L1P1>set ether fef enable

Only 100M fiber port can set far end fault!

- 1. Use the **go** command to switch to the 100M fiber port.
- 2. Re-enter the **fef** command.
- 3. Use an alternate Ethernet test command in place of the **fef** command.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot set 1000M speed for this card!

You tried to use the **set ether speed** command to set the device's speed to 1000 Mbps (1 Gbps), but the card you entered the command on does not support this speed. For example:

C1|S16|L1P1>set ether speed=1000M Can not set 1000M speed for this card! C1|S16|L1P1>

- 1. Use the **set ether speed** ? command to determine the card's speed capabilities.
- 2. Re-enter the **set ether speed= command** with a speed supported by the card.
- 3. Use another (supported) command, or use the go command to switch to a device that supports this function.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Set Ethernet port loopback type failed.

You tried to use the **set oam loopback type** command to set the device's type of loopback support, but the command was not accepted. For example:

C1|S16|L1P1>set oam loopback type=phylayer Set Ethernet port loopback type failed. C1|S16|L1P1>

- 1. Verify the command syntax.
- 2. Use another (supported) command, or use the go command to switch to a device that supports this function.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot show system information on this card!

You entered the **show system information** command from an unsupported device. For example:

C1|S22|L1D>**show system information**Cannot show system information on this card!

- 1. Try using the **show card info** command.
- 2. Use the **go** command to switch to a different device (e.g., from the Power Supply to the IONMM or an x6010 card).
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

L2CP is not supported on this card!

You tried to perform an L2CP function but the device does not support L2CP.

- 1. Make sure this is the command / function that you wanted.
- 2. Use the **go** command to switch to a device that supports L2CP.
- 3. Try entering the command again. See "Configuring L2CP" on page 268.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot show circuit-ID on this card!

You tried to display the Circuit ID information, but the function is not supported.

- 1. Make sure this is the command / function that you wanted.
- 2. Use the **go** command to switch to a device that supports Circuit ID display.
- 3. Try entering the command again. See "Circuit ID" on page 268.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot set circuit-ID on this card!

You tried to display the Circuit ID information, but the function is not supported.

- 1. Verify the Circuit ID parameters. See "Circuit ID" on page 268.
- 2. Try entering the command again.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Please reboot the card for the changes to take effect!

You made a change that requires a system reboot in order for the change to take effect. For example:

```
C1|S5|L1D>set snmp traphost svr 1 type ipv4 addr 192.168.1.30 Please reboot the card for the changes to take effect!
C1|S5|L1D>
```

- 1. Reboot the card. See the "Reboot" section on page 292.
- 2. Continue the operation.
- 3. If a problem persists, contact Technical Support. See Contact Us on page 241.

Get DMI identifier no such object.

You entered the CLI command to display DMI information, but it was not available. For example:

```
C1|S3|L1P2>show dmi info
Get DMI identifier no such object.
C1|S3|L1P2>
```

- 1. Make sure this is the command / function that you wanted.
- 2. Try entering the command again. See "DMI (Diagnostic Maintenance Interface) Parameters" on page
- 3. If a problem persists, contact Technical Support. See Contact Us on page 241.

33493 Rev. E

Get SNMP version no such object.

You entered the CLI command to display SNMP configuration information, but it was not available. For example:

C1|S3|L1D>show snmp config

SNMP configuration:

Get SNMP version no such object.
C1|S3|L1D>

- 1. Make sure this is the command / function that you wanted.
- 2. Verify the command syntax. See "Configuring SNMP" on page 245.
- 3. For complete command descriptions, see "Command Line Interface (CLI) Reference" on page 124.
- 4. Try entering the command again. See "DMI (Diagnostic Maintenance Interface) Parameters" on page 395.
- 5. If a problem persists, contact Technical Support. See Contact Us on page 241.

Fail to set Ethernet port loopback operation, please check if Link OAM admin state of remote peer port is enabled, link status and other issues.

You entered the CLI command to define the type of Ethernet loopback test, but the command failed. For example:

C1|S5|L1P2>set oam loopback oper init

Fail to set Ethernet port loopback operation, please check if Link OAM admin state of remote peer port is enabled, link status and other issues.

C1|S5|L1P2>

- 1. Make sure the LOAM admin state of remote peer port is enabled (see "set loam admin state" command).
- 2. Verify the command syntax.
- 3. Use the **set oam loopback** ? command to display the card's loopback capabilities. For example:

```
C1:S7:L1P1>set oam loopback type ? alternate noloopback remote
```

- 4. Re-enter the set oam loopback= command with a loopback capability supported by the card.
- 5. Verify the loopback capability with the **show oam loopback capability** command. For example:

```
C1|S5|L1P2>show oam loopback capability
Loopback capability: alternate remotePeer
C1|S5|L1P2>
```

- 6. Use another (supported) command, or use the go command to switch to a device that supports this function.
- 7. If the problem persists, contact Technical Support. See Contact Us on page 241.

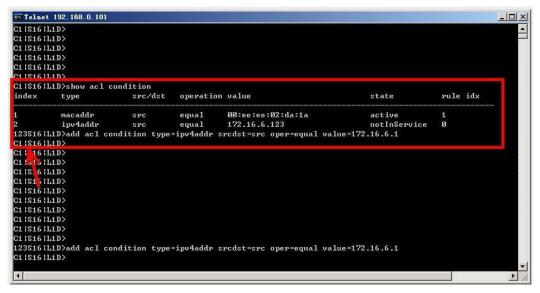
Cannot set speed on this port!

You entered the CLI command to define the NID port's operating speed, but the command failed. For example:

C1|S5|L1P2>set ether speed 100M Can not set speed on this port! C1|S5|L1P2>

- 1. Verify the NID supports this speed.
- 2. Verify the command syntax.
- 3. Re-enter the **set ether speed=** command with a speed supported by the card.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Fail to set port advertisement capability!


This message indicates that the capabilities specified for the Set Ethernet Port Advertisement Capability (set ether adv-cap) command are not valid choices. For example:

C1|S5|L1P2>set ether adv-cap 1000XFD C1|S5|L1P2>set ether adv-cap 1000XHD Fail to set port advertisement capability! C1|S5|L1P2>

- 1. Verify the x6010 supports this capability.
- 2. Verify the command syntax.
- 3. Retry the operation. For a complete list of the available commands, see "Section 6: CLI Reference" on page 114.
- 4. Use another (supported) command, or use the go command to switch to a device that supports this function.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

Long Command Causes Cursor Wrap to Same Line

When the input command reaches the input max length, the cursor does not return to the next line, but goes back to the beginning of the same line, overwriting the original data.

- 1. Press the Enter key towards the end of the command string and continue entering command text.
- 2. Try using HyperTerminal or the Web interface, at least temporarily.
- 3. Contact Transition Networks for more information. See Contact Us on page 241.

Cannot create VLAN database on this card!

This model of NID does not support the VLAN database. For example:

C1|S7|L1D>add vlan-db vid 2 priority=5 pri-override=enable Cannot create VLAN database on this card! C1|S7|L1D>

- 1. Make sure this is the function that you want.
- 2. Use the go command to switch to a NID that supports the VLAN database.
- 3. Re-enter the **add vlan-db** command.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot remove vlan on this card!

You entered a command to delete one or all VLANs from the NID, but the action cannot be performed. For example:

C1|S7|L1D>remove vlan all Cannot remove vlan on this card! C1|S7|L1D>remove vlan vid=3 Cannot remove vlan on this card! C1|S7|L1D>

- 1. Make sure this is the function that you want.
- 2. Use the **go** command to switch to a NID that supports the VLAN database.
- 3. Use the add vlan-db command to add a VLAN VID if needed.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot remove forward database rows on this card!

You entered a command to delete a VLAN forward database VID (forward database row) from the NID, but the action cannot be performed. For example:

C1|S7|L1D>**remove vlan-db vid 3**Cannot remove forward database rows on this card!
C1|S7|L1D>

- 1. Make sure this is the function that you want.
- 2. Use the **go** command to switch to a NID that supports the VLAN FDB.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Error: location parameter should be digital number!

You entered a letter or special character as part of the **go** command. For example:

C1|S7|L1P2>go c=s s=5 l1d Error: location parameter should be digital number! C1|S7|L1P2>

- 1. Re-enter the **go** command with the correct syntax (e.g., change the letter **s** to a number in the example above).
- 2. Retry the operation. See "Section 6: Command Line Interface (CLI) Reference" on page 125.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

```
Error: parameter out of range, level1 port-id range is (1 .. 15)!

Error: parameter out of range, level2 port-id range is (1 .. 16)!

Error: parameter out of range, level3 port-id range is (1 .. 16)!

Error: parameter out of range, chassis-id range is (1 .. 16)!

Error: parameter out of range, level1 attachment port-id range is (1 .. 16)!

Error: parameter out of range, level2 attachment port-id range is (1 .. 16)!
```

You used the go command to move to a port, but the command was not accepted. For example:

```
C1 S7 L1D>go l1p=0
Error: parameter out of range, level1 port-id range is (1 .. 15)!
C1 S7 L1D>
```

- 1. Make sure this is the port that you want. See "Managing Device and Port Hierarchy Using CLI Commands" on page 83.
- 2. Re-enter the **go** command.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot show cable length for fiber port!

You entered the command to display the length of the copper cable for a port that does not support it.

- 1. Make sure the NID supports the **show cable length** command (only for x2110).
- 2. Verify the command syntax. See the related *User Guide* manual.
- 3. Type **show ether config** to show the Ethernet port's configuration.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Auto-negotiation is enabled, you can not set port duplex now!

You entered the command to assign a duplex mode, but the command is not functional if Autonegotiation is currently enabled.

- 1. Either leave the Auto-negotiation setting and use the current duplex setting, or disable AutoNegotiation and set the Duplex mode as required.
- 2. Use the **show ether config** command to display the current Auto-negotiation and Duplex settings.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

TDM config is not supported on this card!

You entered the command to configure TDM, but the command is not functional on the NID model.

- 1. Use the **show tdm config** command to display the current config settings.
- 2. Either use a different (supported) command, or change to another NID card that supports the TDM function.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

TDM port config is not supported on this card!

You entered the command to configure TDM, but the command is not functional on the port.

- 1. Use the **show tdm config** command to display the current config settings.
- 2. Either use a different (supported) command, or change to another port that supports the TDM function.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

set tdm port loopback operation failed

You enabled the loopback function on both copper and fiber ports at same time, which is not allowed.

- 1. Make sure the LOAM Admin state for this port is enabled (active). See the **set loam admin state** command.
- 2. Make sure LOAM is enabled on both ends of the link.
- 3. Enable the loopback function on either the copper port or the fiber port (but not both ports at the same time).

Set port TAOS Status Failure!

You entered the command to configure TAOS, but the command is not functional on this x6010 port.

- 1. Use the **show taos config** command to display the current config settings.
- 2. Either use a different (supported) command, or change to another NID port that supports the TAOS function.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Set AIS format Failure!

You entered the command to configure AIS, but the command is not functional on this x6010 port.

- 1. Use the **show ais config** command to display the current config settings.
- 2. Verify the command syntax and re-enter the command to configure AIS
- 3. Either use a different (supported) command, or change to another NID port that supports the TAOS function.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

AIS transmit setting is not supported on this card!

You entered a command to enable or configure AIS, but the device does not support the AIS function. For example:

C1|S3|L1D>**set ais transmit=enable**AIS transmit setting is not supported on this card!
C1|S3|L1D>

- 1. Verify that this is the command you want. See "TAOS and AIS Commands" on page 194.
- 2. Either select another device that supports AIS, or enter another command that this device supports.
- 3. Retry the operation.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

TAOS status setting is not supported on this card!

You entered a command to configure TAOS, but the command is not functional on this NID model.

- 1. Use the **show taos config** command to display the current config settings.
- 2. Either use a different (supported) command, or change to another NID card that supports the TAOS function.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot get port security configuration on this port!
Cannot set transparent link pass through on this card!
Cannot show Ethernet statistics on this port!
Can not show ether configure on this card!
IP management is not supported on this card!
No loopback supported on this card!
No Time-domain reflectometer support on this card!
No TDR support on this card!
No loopback supported on this card!
TAOS status setting is not supported on this card!

You entered a command for a function that is not supported on the x6010. For example:

C1|S15|L1D>**set dhcp state disable**IP management is not supported on this card!
C1|S15|L1D>

- 1. Use a **show xxxx config** command to display the current xxxx settings.
- 2. Try another (supported) command on the x6010. See "Section 6: Command Line Interface (CLI) Reference" on page 127.
- 3. Try the failed command on another card that supports the attempted function.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot set if this port can be managed by CPU on this card!

You entered a command to change console access to the device, but the command was rejected. For example:

C1|S4|L1AP2|L2P1>set port mgmtaccess enable
Cannot set if this port can be managed by CPU on this card!
C1|S4|L1AP2|L2P1>

- 1. Use a **show xxxx config** command to display the current xxxx settings.
- 2. Try another (supported) command on the x6010. See "Section 6: Command Line Interface (CLI) Reference" on page 127.
- 3. Try the failed command on another card that supports the attempted function.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

TLPT is not supported if no ethernet port VLAN is not supported if no ethernet port

You entered a command on a x60xx device that does not support the attempted function.

1. Either use a different (supported) command or change to another NID card that supports the TLPT or VLAN function.

2. If the problem persists, contact Technical Support. See Contact Us on page 241.

Software version of this card is too old, please upgrade it! ERROR Software version of this card (1.1.0) is not supported, please upgrade to the same version as the IONMM

You entered a command on a x60xx device that does not support the attempted function.

- 1. Either use a different (supported) command, or change to another NID card that supports the function.
- 2. Upgrade the x60xx firmware. See "Upgrade the IONMM and/or NID Firmware" on page 122.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

33493 Rev. E

Fail to set card entity index!

At one time we can only backup at most 10 cards!

At one time we can only restore at most 10 cards!

Backup finished

Error: this command should be executed on a device!

Error: this command should be executed on IONMM or a standalone SIC!

Fail to set card entity index!

Processing...

The MAX provision configure file name is 64!

The specified module does not exist!

You entered a "**prov**" command to do a Backup or Restore function, but a problem was encountered or the process is not yet finished.

- 1. Wait a few moments for the command to complete and the "Restore finished" or "Backup finished" message to display.
- 2. Retry the backup or restore operation with 10 or fewer devices listed.
- 3. Use the **go** command to switch to the device level of a supported device and re-enter the command.
- 4. Enter a filename of 64 characters or less in length.
- 5. Specify an existing module name.
- 6. If the problem persists, contact Technical Support. See Contact Us on page 241.

Cannot get dot1bridge state on this port!
Cannot set administrate state on this port!
Cannot set advertisement capability on this port!
Cannot set default VLAN id on this port!
Cannot set Ether port duplex mode on this port!
Cannot set pause on this port!
Cannot set VLAN network tagging on this port!
Cannot show VLAN tag config on this port!
Fail to get port type!

You entered a command not supported on the C6120 TP port.

- 1. Either use a different (supported) command, or change to another NID that supports the desired function.
- 2. If the problem persists, contact Technical Support. See Contact Us on page 241.

Error: pattern string is not regular!

Error: this command is not supported on this port!

OID error, module=%d, leaf=%d%s

Set loopback type of the specified TDM port\n

Show TDM information of a specific port\n

You entered a tdm inband config command but the command failed.

- 1. Make sure the TDM configuration is correct. See "Section 6: Command Line Interface (CLI) Reference" on page 136.
- 2. Either use a different (supported) command, or change to another NID or port that supports the desired function.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

No loopback supported on this card!
No TDM loopback supported on this card!
TDM inband config is not supported on this card!
TDM port config is not supported on this card!

You entered a tdm inband config command but the command failed.

- 1. Make sure the TDM configuration is correct. See "Section 6: Command Line Interface (CLI) Reference" on page 136.
- 2. Either use a different (supported) command, or change to another NID that supports the desired function.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Get inband loopback status fail!
Get inband loopback start pattern fail!
Get inband loopback stop pattern fail!

You entered a show tdm inband config command but the command failed.

- 1. Make sure the TDM configuration is correct. See "Section 6: Command Line Interface (CLI) Reference" on page 136.
- 2. Either use a different (supported) command, or change to another NID card that supports the desired function.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Get peer inband loopback start pattern fail! Get peer inband loopback status fail!

You entered a **show tdm peer inband config** command, but the command failed.

1. Make sure the TDM configuration is correct. See "Section 6: Command Line Interface (CLI) Reference" on page 136. Either use a different (supported) command or change to another NID that supports the desired function.

2. If the problem persists, contact Technical Support. See Contact Us on page 241.

Set inband loopback start pattern fail! Set inband loopback stop pattern fail!

You entered a set tdm inband stop pattern= command but the command failed.

- 1. Make sure the TDM configuration is correct. See "Section 6: Command Line Interface (CLI) Reference" on page 136.
- 2. Either use a different (supported) command or change to another NID that supports the desired function.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

This card is in hardware mode and no setting allowed!

You tried to make a configuration change via the Web interface or the CLI, but the action was rejected. For example:

AgentIII C1|S3|L1D>set tdm inband enable
This card is in hardware mode and no setting allowed!
AgentIII C1|S3|L1D>

The device may have a jumper or switch that disables software management of the device. When Configuration Mode is hardware, the devices take some of the configurations from DIP switches or jumpers on the device. In software mode, configuration is controlled by management.

- 1. Make the required changes via DIP switch configuration. See the related section of the manual.
- 2. Change the Hardware/Software Jumper setting to Software mode.
- 3. Retry the configuration change via the Web interface or the CLI.
- 4. Contact Transition Networks for more information. See Contact Us on page 241.

Cannot show slot info on this card!

You entered a "show slot info" command on an ION card other than an IONMM card.

1. Enter another (supported) show command on this card or use the "go" command to switch to the IONMM.

- 2. Retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

ERROR Software version of this card ("cardVersion") is not supported, please upgrade to the same version as the IONMM

Getting card version failed

The failure get template config handler was called.

You attempted a function that is not supported by this version of firmware.

- 1. Enter another (supported) function at this card's firmware version or use the "go" command to switch to another card.
- 2. Upgrade to a newer firmware version. See "TFTP Transfer / Upgrade Commands" on page 204 or "Upgrade / Update Firmware Commands" on page 207.
- 3. Retry the operation.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Error: this command is not supported on this port!

Error: this command should be executed on a device!

Get AIS Transmit no such object.

Get Channel Alarm Indication Signal no such object.

Get link status no such object.

You entered a command at the wrong level (device or port level), or a command that is not supported by this device or port. For example:

AgentIII C1|S3|L1P1>show tdm config

Error: this command should be executed on a device!

AgentIII C1|S3|L1P1>go l1d

AgentIII C1|S3|L1D>show tdm config

Get AIS Transmit no such object.

AgentIII C1|S3|L1D>go |1p=1

AgentIII C1 | S3 | L1P1>show tdm port config

Get Channel Alarm Indication Signal no such object.

AgentIII C1|S3|L1P1>go |1p=3

AgentIII C1|S3|L1P3>show tdm port config

Get link status no such object.

AgentIII C1|S3|L1P5>go l1p=6

AgentIII C1 | S3 | L1P6>show tdm port config

Error: this command is not supported on this port!

AgentIII C1|S3|L1P6>

1. Make sure this is the command / function that you want.

2. Enter another (supported) function at this card's firmware version, or use the "go" command to switch to the appropriate device and/or port.

- 3. Upgrade to a newer firmware version. See "TFTP Transfer / Upgrade Commands" on page 204 or "Upgrade / Update Firmware Commands" on page 207.
- 4. Retry the operation.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

Web Interface Messages

IMPORTANT

For each procedure described below, do each step sequentially as indicated. If the result of a step causes the problem to be corrected, **do not** continue with the other steps in the procedure.

Cannot Ping IONMM Device

- 1. Check the IONMM and x6010 cabling.
- 2. Make sure IONMM and x6010 are securely seated.
- 3. Reset the IONMM.
- 4. Unplug and then re-plug the USB cable at the IONMM.
- 5. Unplug and then re-plug the Ethernet cable at the IONMM.
- 6. If the problem persists, contact Technical Support. See Contact Us on page 241.

Getting values failed (snmp operation timeout)

This message indicates that you entered an invalid parameter value.

- 1. Click the **Refresh** button to clear the message.
- 2. Verify the recent parameter entries. Refer to the related CoH (cursor-over-help) and then revise parameter entries as needed.
- 3. Retry the operation.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Firmware DB operation failed, unzip failed.

This message indicates that the upload of the upgrade file failed.

- 1. Check that the **db.zip** file was specified in the **Database File Name** field for Windows XP; for Windows 7, specify just "**db**".
- 2. Retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

invalid input file

This message displays in the "Upload Result Reason" field at IONMM > Upgrade tab> Firmware database sub-tab if the "Firmware File Name" entered had an incorrect filename format.

- 1. Verify the parameter value entered; see "Upgrading IONMM Firmware Web Method" on page 250 for valid input information.
- 2. Retry the operation with a valid firmware file name (e.g., IONMM.bin.1.0.5, or x6010.bin.1.0.5).
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Invalid input found!

This message indicates that you entered a parameter outside the valid range (e,g, VLAN ID = 0).

- 1. Verify the parameter value to be entered; check the online Help for valid input information.
- 2. Retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Invalid password!

This message indicates that the password entered during sign on is not valid.

- 1. Sign in using the correct password. The default password is **private**.
 - Note: the password is case sensitive. Make sure the keyboard's "Caps Lock" is off.
- 2. Wait one to several minutes (how long depends on the population of the chassis) for the password to be accepted and the log in to proceed.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Failed to retrieve DMI info on current port.

You clicked the Device port's DMI tab, but the device does not support DMI. Not all NID models/ports support DMI. The NIDs that support DMI have a "D" at the end of the model number.

- 1. Verify that the NID supports DMI.
- 2. See "DMI (Diagnostic Maintenance Interface) Parameters" on page 248 for more information.
- 3. Retry the operation.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Admin Status: Down (or Testing)

In the device's port, at the **MAIN** tab in the **Port Configuration** section, the Admin Status field displays "Down". Typically, if 'Admin Status' is Down, then 'Link Status' is also Down.

The status here is the desired state of the interface. The "Testing" status indicates that no operational packets can be passed. When a managed system initializes, all interfaces start with 'Admin Status' in the Down state. As a result of either explicit management action or per configuration information retained by the managed system, 'Admin Status' is then changed to either the Up or Testing states, or remains in the Down state.

- 1. Verify the initialization process; see "Section 2: Installation and System Setup" on page 40.
- 2. Verify the attempted operation procedure in the related section of this manual.
- 3. Retry the operation. Wait several minutes for initialization and discovery to take place.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Link Status: Down (or Testing or Dormant, or NotPresent)

This is the current operational state of the interface.

The 'Link Status' Testing state indicates that no operational packets can be passed.

If 'Admin Status' is Down then 'Link Status' likely will be Down.

If 'Admin Status' is changed to Up, then 'Link Status' should change to Up if the interface is ready to transmit and receive network traffic.

'Link Status' should change to Dormant if the interface is waiting for external actions (such as a serial line waiting for an incoming connection);

'Link Status' should remain in the Down state if and only if there is a fault that prevents it from going to the Up state;

'Link Status' should remain in the NotPresent state if the interface has missing (typically, hardware) components.

Link Status: *Down*: The ION system interface is not ready to transmit and receive network traffic due a fault.

- 1. Review any specific fault and its recommended recovery procedure.
- 2. Verify the initialization process; see "Section 2: Installation and System Setup" on page 40.
- 3. Verify the attempted operation procedure in the related section of this manual.
- 4. Retry the operation. Wait several minutes for initialization and discovery to take place.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

Link Status: *Dormant*: The ION system interface is waiting for external actions (such as a serial line waiting for an incoming connection).

- 1. Wait several minutes for initialization and discovery to take place, and then retry the operation.
- 2. If the problem persists, contact Technical Support. See Contact Us on page 241.

Link Status: NotPresent: the interface has missing components (typically hardware).

- 1. Verify the ION system installation; see "Section 2: Installation and System Setup" on page 40.
- 2. Wait several minutes for initialization and discovery to take place, and then retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Link Status: Testing: The ION system interface can not pass operational packets.

- 1. Verify that diagnostic tests were run properly and completed successfully.
- 2. Wait several minutes for initialization and discovery to take place, and then retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Setting values failed (http server error)

This message indicates a configuration entry error (e.g., https).

- 1. Enter a valid value. Refer to the Help screen for more information.
- 2. Retry the operation. See "Configuring HTTPS" on page 208.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Setting values failed (snmp operation error)

This message indicates that the SNMP Configuration entered had an invalid SNMP entry (e.g., an unrecognized Trap Manager address entry).

- 1. Enter a valid value. Refer to the Help screen for more information.
- 2. Retry the operation. See the related section of this manual.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

TFTP file transferring failed!

This message indicates that a TFTP operation could not be completed.

TFTP for Backup download operation:

- 1. Verify that:
 - a. The correct module(s) has been selected.
- b. The IP address of the TFTP server is correct.
- c. The TFTP server is online and available.
- 2. Perform a backup of the module(s) for which the download operation was intended. Make sure that the status of the backup operation for each module is "Success".
- 3. Retry the operation.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

TFTP for Restore upload operation:

- 1. Check:
 - The IP address of the TFTP server is correct.
 - The TFTP server in online and available.
 - The file to be uploaded is in the default directory on the server.
 - The correct module(s) has been selected.
- 2. Retry the operation.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

TFTP operation failed!

This message indicates that the upload portion of an upgrade operation failed.

- 1. Check:
 - The IP address of the TFTP server is correct.
 - The TFTP server in online and available.
 - The correct file name is specified ("db.zip" for Windows XP or "db" for Windows 7).
 - The db.zip (or db) file is in the default directory on the TFTP server.
- 2. If the problem persists, contact Technical Support. See Contact Us on page 241.

There is a problem with this website's security certificate.

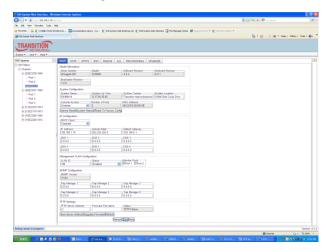
This message indicates that the security certificate presented by this website was changed.

- 1. Click the Continue to this website... selection.
- 2. See the "Configuring HTTPS" section on page 192.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Web UI Management connection Lost

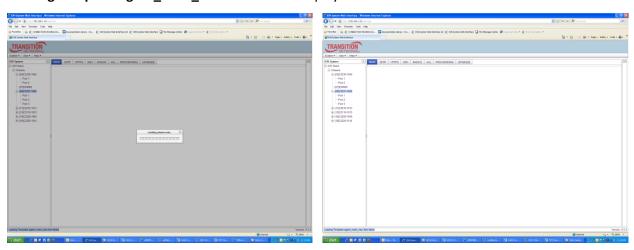
- 1. With the "Egress Rate Limit" set to "Unlimited", the PC can ping the device (e.g., S2220-1013).
- 2. After reducing the "Egress Rate Limit" to "80m", the ping fails.

 The return traffic to the PC is non-mgmt packet and is subjected to Egress rate-limiting, hence these packets are getting dropped.
- 3. Increase the port 1 "Egress Rate Limit" to "900m" or "800m" to reserve some Egress bandwidth for user management traffic.
 - The PC can ping to S2220-1013 again, and the WEB UI can be managed again.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.


Current power status of this slot is off, please turn it on before you reset it!

The reset function only works when the slot power is in the On position to have the unit to reboot/reset.

- 1. At Chassis > MAIN > Chassis Members click the "On" button in the Power Status column of the device before you click the "Reset" button.
- 2. If the problem persists, contact Technical Support. See Contact Us on page 241.


Message: "Setting values in progress ..." displays continuously

The message "Setting values in progress ..." displays for over 10 minutes after you set up a VLAN 100, then set Management VLAN to Enabled and clicked Save.

Getting values failed (http server error) then displays.

Loading Template agent_main_view.htm failed displays:

MAIN tab displayed is blank after you close the Loading ... dialog box.

Meaning: These messages display after you turn on the Management VLAN function either via the ION Web interface or the CLI. (The CLI command is **set mgmt vlan state=enable**, and the Web interface is from the IONMM **MAIN** screen in the **Management VLAN Configuration** section, where the **Status** field is set to **Enabled**. In both cases, management control is given to the Management VLAN that you enabled.

Recovery: The recovery (re-gaining control from the CLI or Web interface) is to turn off Management VLAN via the CLI (set mgmt vlan state=enable) or via the Web interface (IONMM MAIN > Management VLAN Configuration > Status > Enabled).

Message: The DMI feature is not supported on current port

Meaning: Not all NID models support DMI. Transition Networks NIDs that support DMI have a "D" at the end of the model number. If you click the DMI tab on a NID model that does not support DMI, the message "The DMI feature is not supported on current port."

The DMI (Diagnostic Maintenance Interface) function displays NID diagnostic and maintenance information such as interface characteristics, diagnostic monitoring parameters, and supported media lengths.

Recovery: 1. Verify that the device and port support DMI. See "DMI (Diagnostic Maintenance Interface) Parameters" on page 248 for more information.

- 2. Switch to a NID / port that supports the DMI feature.
- 3. Retry the operation.

Message: priority is empty or invalid

Meaning: Can't change ACL status to enable, message box show "priority is empty or invalid"

Recovery: 1. Review the ACL entries. See "Configuring an ACL" on page 201.

2. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: Loading template config file succeeded displays but the ION Stack node won't expand.

Meaning: Either the loading or the discovery process may be hung up.

Recovery: 1. Click the checkbox to close the "Loading, please wait ..." dialog box (if displayed).

- 2. Contract and expand the ION Stack node again.
- 3. If the message "Discovering succeeded" displays, but the ION Stack node won't expand:
 - a) Sign out and sign back in to the ION system
 - b) Cycle power to the ION system.
 - c) Disconnect and then re-connect the USB cable at the IONMM.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: Getting Records failed (snmp operation timeout)

Message: Getting records failed (http server error)

Meaning: The NID could not find the records associated with the operation attempted.

Recovery: 1. Verify the attempted operation was performed correctly.

2. Retry the operation. See the applicable section (e.g., "Upgrade" section on page 321 or page 327, or "Backup and Restore Operations (Provisioning)" on page 296.

- 1. Reboot the x6010. See "Reboot" on page 317.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: System initializing or SNMP service busy, please wait...

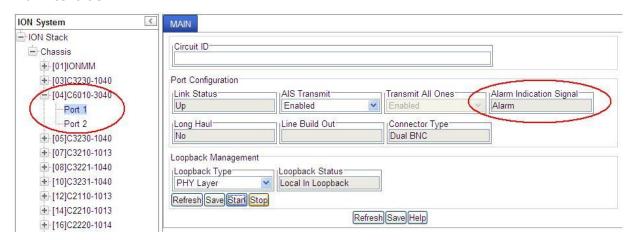
Meaning: The system password was accepted, but the system

Recovery: Sign in using the correct password. The default password is private. Note that the password is case sensitive.

- 1. Make sure the keyboard's "Caps Lock" is off.
- 2. Wait one to several minutes (how long depends on the population of the chassis) for the password to be accepted and the log in to proceed.
- 3. Verify the SNMP configuration.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

ION System MAIL DMI ION Stack Interface Characteristics Chassis -DMLID-Connector Type Nominal Bit Rate (Mbps) **±** [01]IONMM SFP 1300 102102220-1040 Fiber Interface Wavelength (nm)-[04]C6010-3040 850 Port 1 Diagnostic Monitoring Port 2 Receive Power (µW)-Receive Power (dBM) Receive Power Alarm + 105103230-1040 ⊕ [07]C3210-1013 ⊕ [08]C3221 1040 +-(12)C2110-1013 ALARM: Receive power is below specified threshold. Fiber trap intrusion may be in progress. ± [14]C2210-1013 Temperature (°C) Temperature (°F) Temperature Alarn ± [16]C2220-1014 Normal 38.7 101.7 Ē-[18]C3220-1040 Transmit Bias Current (μΑ)-Transmit Bias Alarm Port 1

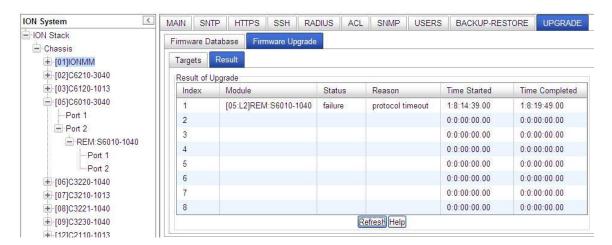
Normal


Message: ALARM: Receive power is below specified threshold. Fiber trap intrusion may be in progress.

Meaning: At C6010 > Port 2 > DMI tab, the Rx Power Intrusion Threshold setting was exceeded. With a preset level for Rx Power on the Fiber port, if the DMI read value falls below this preset value, an intrusion is suspected, and a trap is generated. Fiber optic cables can be vulnerable to tapping, with or without physical intrusion into the optic cable light path.

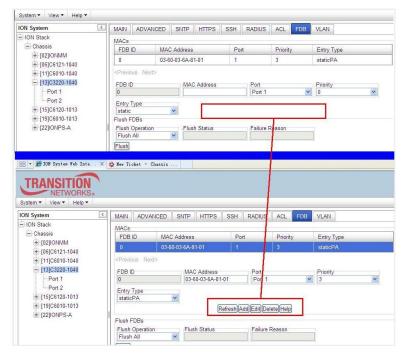
Either the "Rx Power Intrusion Threshold (μW)" setting is too high, or an optical fiber may have been tapped, which could allow the data stream to be intercepted.

- 1. Make sure that an intrusion did not cause the alarm; check with your organization's security staff.
- 2. Change the **Rx Power Intrusion Threshold** setting to a higher value:
 - a. From the x6010 Web interface, at x6010 > Port x (SFP) > DMI tab, enter a lower threshold setting and click Save and then click Refresh.
 - b. From the x6010 CLI, enter the set dmi rx-power-preset-level=xx command where xx is a lower setting, and press the Enter key. See "DMI (Diagnostic Maintenance Interface) Parameters" on page 450.
- 3. From the CLI, enter the command **reset all ports counters** and press the **Enter** key.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.


Alarm condition

Meaning: The Alarm Indication Signal field displays "Alarm", which means that the other end has TAOS enabled and is currently transmitting an alarm condition.

- 1. Click the Refresh button.
- 2. Click the **Stop** button.
- 3. Change the **Loopback Type** selection to **No Loopback** and click the **Save** button.
- 4. For more information see "AIS (Alarm Indication Signal)" on page 13.
- 5. See "Alarm Indication Signal Alarm Condition" on page 233.
- 6. If the problem persists, contact Technical Support. See Contact Us on page 241.


Message: Remote S6010 Upgrade failure - protocol timeout

Meaning: At the **IONMM > Upgrade > Firmware Upgrade > Results** subtab, the "protocol timeout" Reason displays with "failure" displayed in the Status column. The probable cause was a temporary line fault.

- 1. Check the IONMM, C6010, and S6010 cabling and connections.
- 2. Try the upgrade procedure again.
- 3. If the problem persists, contact Technical Support. See Contact Us on page 241.

In IE8 or IE9, the 'Refresh', 'Add', 'Edit', 'Delete', 'Help' buttons of FDB do not display.

1. Select IE8 **Tools** > **Compatibility Mode** to use the IE8 'Compatibility View'. The message "*Compatibility View* - 192.168.1.10 is now running in Compatibility View.' displays.

- 2. Log in to the ION system again.
- 3. Select the FDB tab.
- 4. Select at least one table of FDB, and then click the web page; the button will display normally.
- 4. Click one existing MAC address in the MAC address list.

Website displays incorrectly in Internet Explorer 8 or 9

Websites that were designed for earlier versions of Internet Explorer might not display correctly in the current version. However, you can often improve how a website will look in Internet Explorer by using the new 'Compatibility View' feature. When you turn on Compatibility View, the webpage displayed (and any other webpages within the website's domain) will display as if you were using an earlier version of Internet Explorer.

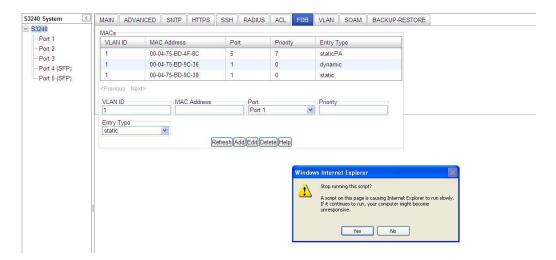
- 1. In IE8, click the **Stop** button on the right side of the Address bar.
- 2. If the page has stopped loading, click the **Refresh** button to try again.
- 3. Click the Tools button, and then click Compatibility View.

If Internet Explorer recognizes a webpage that is not compatible, the **Compatibility View** button displays on the Address bar. To turn Compatibility View on, click the **Compatibility View** button. From now on, whenever you visit this website, it will be displayed in Compatibility View. However, if the website receives updates to display correctly in the current version of Internet Explorer, Compatibility View will automatically turn off. Note that not all website display problems are caused by browser incompatibility. Interrupted Internet connections, heavy traffic, or website bugs can also affect how a webpage is displayed. To go back to browsing with Internet Explorer 8 on that site, click the **Compatibility View** button again.

- 4. Check your ION firmware version and upgrade to the latest if outdated. See the "Upgrade" section on page 266.
- 5. Check the Microsoft Support Online website http://support.microsoft.com/ph/807/en-us/#tab0 for more information.
- 6. See also: http://msdn.microsoft.com/en-us/library/dd567845%28v=vs.85%29.aspx http://support.microsoft.com/kb/960321

http://blogs.msdn.com/b/ie/archive/2008/08/27/introducing-compatibility-view.aspx

7. In IE9, click the **Compatibility View** toolbar button on the Address bar to display the website as if you were using an earlier version of Internet Explorer. See the Microsoft Support website Article ID: 956197 at http://support.microsoft.com/kb/956197.


Script error message received.

Stop running this script? A script on this page is causing Internet Explorer to run slowly. If it continues, your computer might become unresponsive. Yes / No

Error: Object doesn't support this property or method.

A Runtime Error has occured. Do you wish to Debug?

Done, but with errors on page.

- 1. Click the **Yes** button to stop the script.
- 2. Click **Show Details** to display error details.
- 3. Disable script debugging.
- 4. Test a Web page from another user account, another browser, and another computer.
- 5. Verify that Active Scripting, ActiveX, and Java are not being blocked by Internet Explorer.
- 6. Remove all the temporary Internet-related files.
- 7. Install the latest Internet Explorer service pack and software updates.
- 8. For more advanced troubleshooting, see the Microsoft Support Article ID 308260 at http://support.microsoft.com/kb/308260.

The Config Error Log (config.err) File

The error log file (.ERR file) is downloaded to the TFTP server address specified, in TFTP-Root, with a filename such as 1-11-C2210-1013.config. You can open the file in WordPad or a text editor. The config.err messages are failed web interface functions that were attempted, translated into CLI commands.

A sample portion of an error log file (.ERR file) is shown below.

```
1-3-C3230-1040.config - WordPad
File Edit View Insert Format Help
 AGENT PM ERROR: CLI command remove vlan all failed
  AGENT PM ERROR: CLI command remove fwddb all failed
 AGENT PM ERROR: CLI command set ip-mgmt state=enable failed
 AGENT PM ERROR: CLI command set dhcp state=disable failed
 AGENT PM ERROR: CLI command set ip type=ipv4 addr=192.168.0.10 subnet-mask=255.255.255.0 failed
 AGENT PM ERROR: CLI command set gateway type=ipv4 addr=192.168.0.1 failed
 AGENT PM ERROR: CLI command set dns-svr svr=1 type=dns addr=0.0.0.0 failed
 AGENT PM ERROR: CLI command set dns-svr svr=2 type=dns addr=0.0.0.0
                                                                     failed
 AGENT PM ERROR: CLI command set dns-svr svr=3 type=dns addr=0.0.0.0 failed
 AGENT PM ERROR: CLI command set dns-svr svr=4 tvpe=dns addr=0.0.0.0 failed
 AGENT PM ERROR: CLI command set dns-svr svr=5 type=dns addr=0.0.0.0 failed
 AGENT PM ERROR: CLI command set dns-svr svr=6 tvpe=dns addr=0.0.0.0 failed
 AGENT PM ERROR: CLI command set snmp traphost svr=1 type=dns addr=0.0.0.0 failed
 AGENT PM ERROR: CLI command set snmp traphost svr=2 tvpe=dns addr=0.0.0.0
                                                                           failed
 AGENT PM ERROR: CLI command set snmp traphost svr=3 tvpe=dns addr=0.0.0.0 failed
 AGENT PM ERROR: CLI command set snmp traphost svr=4 type=dns addr=0.0.0.0 failed
 AGENT PM ERROR: CLI command set snmp traphost svr=5 type=dns addr=0.0.0.0 failed
 AGENT PM ERROR: CLI command set snmp traphost syr=6 type=dns addr=0.0.0.0 failed
 AGENT PM ERROR: CLI command set sntp state=disable failed
 AGENT PM ERROR: CLI command set sntp dst-state=disable failed
 AGENT PM ERROR: CLI command set sntp timezone=8 failed
 AGENT PM ERROR: CLI command set sntp dst-start="1969 1231 18:00:00" failed
 AGENT PM ERROR: CLI command set sntp dst-end="1969 1231 18:00:00" failed
 AGENT PM ERROR: CLI command set sntp dst-offset=0 failed
 AGENT PM ERROR: CLI command set sntp-svr svr=1 type=dns addr=0.0.0.0 failed
 AGENT PM ERROR: CLI command set sntp-svr svr=2 type=dns addr=0.0.0.0 failed
```

These messages show a translation of failed web interface functions that were attempted, translated into their equivalent CLI commands.

The config.err files are saved in the TFTP server location specified (typically *C:\TFTP-Root*) with a file name something like: 1-2-2-C3220-1040_20100608.config.err. Each message is prefixed by the words "AGENT PM ERROR: CLI command". The remaining words and phrases are explained below:

- 1. The first word in the message (e.g., add, set, remove) shows the type of action attempted.
- 2. The second word or phrase in the message (e.g., *dhcp state, fwddb, gateway type, vlan-db vid*, etc.) lists the general function attempted. This is the part of the message immediately preceding the = sign.
- 3. The next word or phrase in the message is the specific function attempted that immediately follows the = sign or the second word of the message (e.g., all, =enable, =disable, =8, =dns addr=0.0.0.0, etc.). This part of the error message may include several segments with = signs (e.g., =0.0.0.0 retry=3 timeout=30.
- 4. The final word in the message line is the word "failed".

config.err Messages

Sample config.err file information is provided below.

1-2-2-C3220-1040 20100608.config.err

```
1 AGENT PM ERROR- CLI command remove vlan all failed
2 AGENT PM ERROR- CLI command remove fwddb all failed
3 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-10 conn-port=1 priority=1 type=staticNRL failed
4 AGENT PM ERROR- CLI command remove vlan all failed
5 AGENT PM ERROR- CLI command remove fwddb all failed
6 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-00-02 conn-port=1 priority=1 type=staticNRL failed
7 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-00-03 conn-port=1 priority=1 type=staticNRL failed
8 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-00-04 conn-port=1 priority=1 type=staticNRL failed
9 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-05 conn-port=1 priority=1 type=staticNRL failed
10 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-06 conn-port=1 priority=1 type=staticNRL failed
11 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-07 conn-port=1 priority=1 type=staticNRL failed
12 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-08 conn-port=1 priority=1 type=staticNRL failed
13 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-09 conn-port=1 priority=1 type=staticNRL failed
14 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-10 conn-port=1 priority=1 type=staticNRL failed
15 AGENT PM ERROR- CLI command remove vlan all failed
16 AGENT PM ERROR- CLI command remove fwddb all failed
17 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-02 conn-port=1 priority=1 type=staticNRL failed
```

17 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-02 conn-port=1 priority=1 type=staticNRL failed 18 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-00-03 conn-port=1 priority=1 type=staticNRL failed 20 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-05 conn-port=1 priority=1 type=staticNRL failed 21 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-05 conn-port=1 priority=1 type=staticNRL failed 22 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-06 conn-port=1 priority=1 type=staticNRL failed 22 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-07 conn-port=1 priority=1 type=staticNRL failed 23 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-08 conn-port=1 priority=1 type=staticNRL failed 24 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-00-09 conn-port=1 priority=1 type=staticNRL failed 25 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-00-10 conn-port=1 priority=1 type=staticNRL failed 26 AGENT PM ERROR- CLI command remove vlan all failed

27 AGENT PM ERROR- CLI command remove fwddb all failed

28 AGENT PM ERROR- CLI command add fwddb mac=01-00-00-00-10 conn-port=1 priority=1 type=staticNRL failed

config.err Message Responses

Some typical error log file messages and the recommended responses are provided below (without the prefix of "AGENT PM ERROR: CLI command").

Message: set ip-mgmt state=enable failed

Response: 1. Check if this is a recurring problem. 2. Verify the operation in the related section of this manual. Retry the operation. 3. See the related DHCP command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set dhcp state=disable failed

Response: 1. Check if this is a recurring problem. 2. Verify the DHCP operation in the related section of this manual. Retry the DHCP operation. 3. See the related DHCP command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set ip type=ipv4 addr=192.168.0.10 subnet-mask=255.255.255.0 failed

Response: 1. Check if this is a recurring problem. 2. Verify the operation in the related section of this manual. Retry the operation. 3. See the related command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set gateway type=ipv4 addr=192.168.0.1 failed

Response: 1. Check if this is a recurring problem. 2. Verify the operation in the related section of this manual. Retry the operation. 3. See the related command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set dns-svr svr=1 type=dns addr=0.0.0.0 failed

Response: 1. Check if this is a recurring problem. 2. Verify the DNS Server operation in the related section of this manual. Retry the operation. 3. See the related DNS server command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set snmp traphost svr=1 type=dns addr=0.0.0.0 failed

Response: 1. Check if this is a recurring problem. 2. Verify the SNMP operation in the related section of this manual. Retry the SNMP operation. 3. See the related SNMP command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set sntp state=disable failed

Response: 1. Check if this is a recurring problem. 2. Verify the SNTP operation in the related section of this manual. Retry the SNMP operation. 3. See the related SNTP command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set sntp dst-state=disable failed

Response: 1. Check if this is a recurring problem. 2. Verify the SNTP operation in the related section of this manual. Retry the SNMP operation. 3. See the related SNTP command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set sntp timezone=8 failed

Response: 1. Check if this is a recurring problem. 2. Verify the SNTP operation in the related section of this manual. Retry the SNMP operation. 3. See the related SNTP command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set sntp dst-start="1969 1231 18:00:00" failed

Response: 1. Check if this is a recurring problem. 2. Verify the SNTP operation in the related section of this manual. Retry the SNMP operation. 3. See the related SNTP command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set sntp dst-end="1969 1231 18:00:00" failed

Response: 1. Check if this is a recurring problem. 2. Verify the SNTP operation in the related section of this manual. Retry the SNMP operation. 3. See the related SNTP command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set sntp dst-offset=0 failed

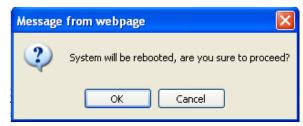
Response: 1. Check if this is a recurring problem. 2. Verify the SNTP operation in the related section of this manual. Retry the SNMP operation. 3. See the related SNTP command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: set sntp-svr svr=1 type=dns addr=0.0.0.0 failed

Response: 1. Check if this is a recurring problem. 2. Verify the SNTP operation in the related section of this manual. Retry the SNMP operation. 3. See the related SNTP command in "Section 6: Command Line Interface (CLI) Reference" on page 124.. 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

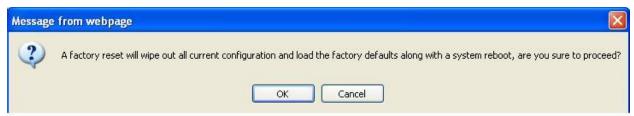
Message: AGENT PM ERROR: CLI command set rfd state=configuration. failed

Response:


- 1. Make sure the RFD (Remote Fault Detect) is enabled.
- 2. Retry the operation.
- 3. Verify the procedure in "Configuring Selective and Transparent Link Pass Through" on page 204.
- 4. Restart the system.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.

Webpage Messages

Certain menu operations will display a webpage verification message to verify that you want to proceed. These messages also provide information on the effect that the operation will have if you continue. These messages display for operations such as **Reset to Factory Config**, **Reboot the System**, or other operational confirmation messages.


See Menu System Notes on page 79 for more information.

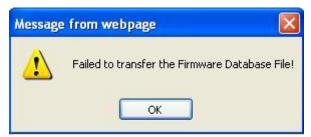
Message: System will be rebooted, are you sure to proceed?

Response: Click OK only if you wish to reboot. Otherwise click Cancel.

Message: A factory reset will wipe out all current configuration and load the factory defaults along with a system reboot; are you sure to proceed?

Response: Click OK only if you wish to reboot. Otherwise click Cancel.

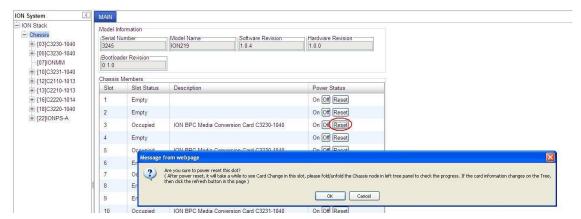
Message: The firmware upgrade failed!



The MAIN tab > TFTP Settings section Status area displays "TFTP Failure".

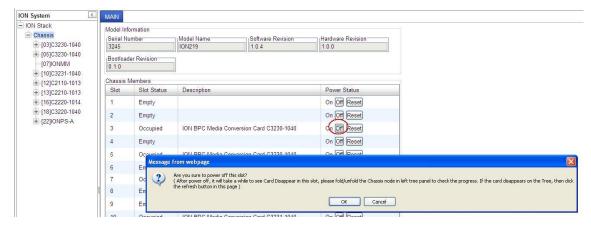
Meaning: While performing a Firmware Upgrade from the **MAIN** tab > **TFTP Settings** section, a problem was detected. See the Upgrade the IONMM Firmware section on page 205.

- 1. Click OK.
- 2. Make sure you are using a TFTP Server package (not an FTP package). You will not be able to connect to the TFTP Server with an FTP client.
- 3. Make sure that you downloaded the correct IONMM firmware file from the Transition Networks web site.
- 4. Verify the **TFTP Server Address** entry. It should be the IP address of your TFTP Server (e.g., 192.168.1.30).
- 5. Verify the **Firmware File Name** that you entered is the one you intended, and that it is in the proper filename format (e.g., **IONMM.bin.1.0.5**).
- 6. Check the log status in the TFTP Server package; when successful, it should show something like "Sent IONMM.bin.1.0.5 to (192.168.1.30), 9876543 bytes". The **TFTP Settings** section **Status** area should display "Success" when done.
- 7. Make sure that the Management VLAN function is disabled.
- 8. Reset the device. The **TFTP Settings** section **Status** area should display "Success" when done.
- 9. Check the "TFTP Server Messages" sub-section in the "Third Party Tool Messages" section on page 415.
- 10. If the problem persists, contact Technical Support. See Contact Us on page 241.


Message: Failed to Transfer the Firmware Database File!

Meaning: While performing a Firmware Upgrade from the **MAIN** tab > **TFTP Settings** section, a problem was detected. See the Upgrade the IONMM Firmware section on page 205.

- 1. Click OK.
- 2. Make sure you are using a TFTP Server package (not an FTP package). You will not be able to connect to the TFTP Server with an FTP client.
- 3. Make sure that you downloaded the correct IONMM firmware file from the Transition Networks web site.
- 4. Verify the **TFTP Server Address** entry. It should be the IP address of your TFTP Server (e.g., 192.168.1.30).
- 5. Verify the **Firmware File Name** that you entered is the one you intended, and that it is in the proper filename format (e.g., **IONMM.bin.1.0.5**).
- 6. Check the log status in the TFTP Server package; when successful, it should show something like "Sent IONMM.bin.1.0.5 to (192.168.1.30), 9876543 bytes". The **TFTP Settings** section **Status** area should display "Success" when done.
- 7. Reset the device. The **TFTP Settings** section **Status** area should display "Success" when done.
- 8. Check the "TFTP Server Messages" sub-section in the "Third Party Tool Messages" section on page 415.
- 9. If the problem persists, contact Technical Support. See Contact Us on page 241.


Message: Are you sure to power reset this slot? (After power reset, it will take a while to see card change in this slot; please fold/unfold the Chassis node in the left tree panel to check the progress. If the card information changes on the Tree, then click the Refresh button on this page.)

Meaning: A caution message generated at the **Chassis** > **MAIN** tab. You clicked the **Reset** button for a particular slot.

- 1. If you are <u>not</u> sure that you want to reset this slot, click the **Cancel** button to clear the message and return to normal operations without resetting power to this slot.
- 2. If you are sure that you want to reset this chassis, click the **OK** button to clear the message and reset power to the slot.
- 3. At the Chassis > MAIN tab, fold/unfold the Chassis node in the tree panel to check the progress.
- 4. If the card information changes on the Tree, then click the **Refresh** button on this page.
- 5. See the "Menu System Notes" section on page 77.
- 6. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: Are you sure you want to power off this slot? (After power off, it will take a while to see Card Disappear in this slot; please fold/unfold the Chassis node in the left tree panel to check the progress. If the card information changes on the Tree, then click the Refresh button on this page.)

Meaning: A caution message generated at the **Chassis** > **MAIN** tab. You clicked the **Off** button for a particular slot.

Recovery:

- 1. If you are <u>not</u> sure that you want to power off this slot, click the **Cancel** button to clear the message and return to normal operations without resetting power to this slot.
- 2. If you are sure that you want to power off this slot, click the **OK** button to clear the message and remove power to the slot.
- 3. At the **Chassis** > **MAIN** tab, fold/unfold the Chassis node in the tree panel to check the progress.
- 4. If the card information changes on the Tree, then click the **Refresh** button on this page.
- 5. See the "Menu System Notes" section on page 77.
- 6. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: TFTP file transferring failed!

Meaning: Either the TFTP Server is not running, or the filename entered was incorrect or not found. See the "Backup/Restore Operations" section on page 218.

Recovery: 1. Start the TFTP Server and verify the name and location of the file to be transferred. If the file does not exist (e.g., at *C:\TFTP-Root*), then download the file from the TN website at http://transition.com/TransitionNetworks/TechSupport/Downloads/Software.aspx. 2. If the problem persists, contact Technical Support. See Contact Us on page 241.

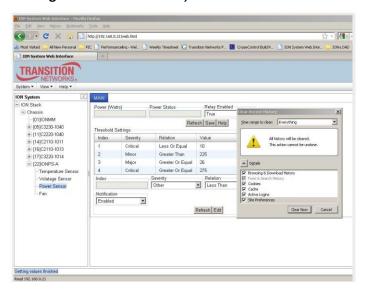
Message: The Connection was Reset

Meaning: The FireFox web browser connection failed to load the page.

Recovery:

- 1. Verify the URL (e.g., http:// versus https://).
- 2. Check if the applicable server is running (TFTP, Syslog, HTTPS server) in the expected location.
- 3. Click the **Try again** button to retry the operation.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: This Connection is Untrusted



Meaning: You tried to connect via FireFox to a URL, but the FireFox web browser did not find a trusted certificate for that site.

Recovery: 1. Click Technical Details for details, or click I Understand the Risks to continue operation.

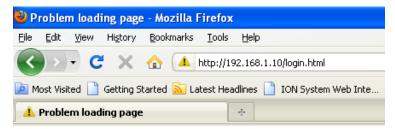
2. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: Clear Recent History

Meaning: You tried to display the Power Supply's temperature, fan, voltage or power sensor sub-menu in the Mozilla Firefox browser.

Recovery:

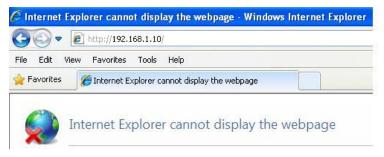
- 1. Click Cancel / Click Clear Now to clear the error dialog.
- 2. Make sure the latest firmware is running. See "Upgrade the IONMM and/or NID Firmware" on page 310. Upgrade the firmware version if needed.
- 3. Expand and contract the ION Stack.
- 4. Retry the operation.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.


Message: Local Area Connection x – A network cable is unplugged

Meaning: You unplugged the USB cable at the NID or IONMM, or the NID or IONMM was unplugged from the ION chassis, or you pressed the **RESET** button on the IONMM.

- 1. If you pressed the **RESET** button on the IONMM, wait a few moments for the message to clear.
- 2. Plug the USB cable back into the IONMM's **USB-DEVICE** connector, or plug the USB cable back into the NID's **USB** connector.
- 3. Try the operation again.
- 4. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: Problem loading page – Mozilla Firefox



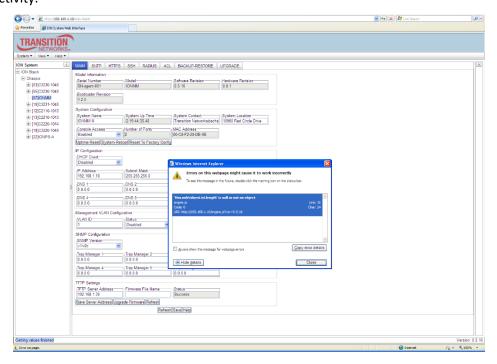
Meaning: You tried to log in to the ION system from the Mozilla Firefox browser, but the login failed.

Recovery:

- 1. Make sure the web browser / version you are using is supported. See "Web Browsers Supported" on page 72.
- 2. Verify the URL entered.
- 3. Verify NID access. See "Accessing the NIDs" on page 60.
- 4. Verify the IP address setting. See "Setting the IP Addressing" on page 89.
- 5. Verify the URL (e.g., http:// versus https://).
- 6. Try to log in to the ION system again.
- 7. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: Internet Explorer cannot display webpage

Meaning: You tried to log in to the ION system from IE, but the login failed.


- 1. Make sure the web browser / version you are using is supported. See "Web Browsers Supported" on page 72.
- 2. Verify the URL entered (e.g., http:// versus https://).
- 3. Verify NID access. See "Accessing the NIDs" on page 60.
- 4. Verify the IP address setting. See "Setting the IP Addressing" in the IONMM User Guide.
- 5. Make sure HTTPS, SSH, and/or RADIUS servers are not enabled in the ION system / device configuration.
- 6. Try to log in to the ION system again.
- 7. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: Error on page.

Message: Errors on this webpage might cause it to work incorrectly.

Message: 'this.mibValuesList.length' is null or not an object

Meaning: In Windows IE, the message displays in the lower left corner of the screen after some amount of inactivity.

Recovery:

- 1. On the Windows IE error dialog, click the "Show details button".
- 2. Click the "Copy error details" button".
- 3. Click the "Webpage error details" button. Additional error information is copied (like doing a Ctl-C keyboard command)
- 4. Paste the error details text (use **Ctl-V** command) into a text file in Notepad, Wordpad, MS Word, etc., and then save the newly created file. For example:

User Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)

Timestamp: Mon, 6 Dec 2010 14:20:17 UTC

Message: 'this.mibValuesList.length' is null or not an object

Line: 30 Char: 24 Code: 0

URI: http://192.168.1.10/engine.js?ver=0.5.16

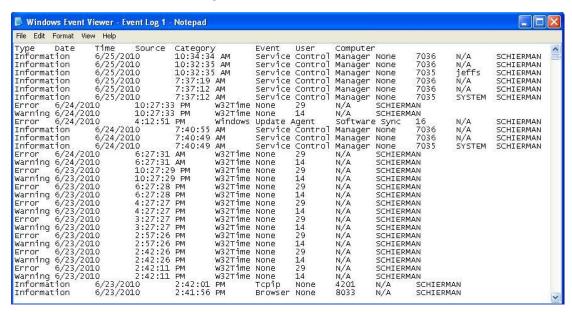
- 5. Click the **Close** button to close the Windows IE error dialog.
- 6. Click the ION system Refresh button.
- 7. Retry the operation.
- 8. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: This webpage is not available.

This webpage is not available.

The webpage at http://192.168.1.10/ might be temporarily down or it may have moved permanently to a new web address.

■ More information on this error


Meaning: You tried to display the ION system web interface in Google Chrome, but could not access the webpage. (You tried to log in to the ION system from IE, but the login failed.

- 1. Make sure the web browser / version you are using is supported. See "Web Browsers Supported" on page 72.
- 2. Verify the URL entered (e.g., http:// versus https://).
- 3. Verify NID access. See "Accessing the NIDs" on page 60.
- 4. Verify the IP address setting. See "Setting the IP Addressing" in the IONMM User Guide.
- 5. Click on "More information on this error.".
- 6. Make sure HTTPS, SSH, and/or RADIUS server are not enabled in the ION system / device configuration.
- 7. Try to log in to the ION system again.
- 8. If the problem persists, contact Technical Support. See Contact Us on page 241.

Windows Event Viewer Messages

A sample Event Log file is shown below.

Windows Event Viewer - Event Log 1:

Message: Information 6/25/2010 737:12AM ServiceControlManager None 7035 SYSTEM

Meaning: Information message regarding SCM.

Recovery: No action required.

Message: Error 6/24/2010 10:27:33 PM W32Time None 29 N/A SYSTEM

Meaning: Error level message regarding W32Time.

Recovery: Open the file, examine the number of messages like this, and the potential problem level.

Message: Warning 6/24/2010 10:27:33 PM W32Time None 14 N/A SYSTEM

Meaning: Warning level message regarding W32Time.

Recovery: Check the other system logs for related messages. If the problem persists, contact Technical Support. See Contact Us on page 241.

ION System Tests

This section describes x6010 DMI and debug functions, PCB configurables, and related test functions.

DMI (Diagnostic Maintenance Interface) Test

The DMI (Diagnostic Maintenance Interface) function displays x6010 diagnostic / maintenance information such as fiber interface characteristics, diagnostic monitoring parameters, and supported fiber media lengths. You can set the fiber port's "Rx Power Intrusion Threshold" to a setting of 0 to 65,535 uW to meet your organization's intrusion detection requirements.

Note: only certain TN NID and SFP models support DMI. NIDs that support DMI have a "D" at the end of the model number.

DMI can be configured in the NID using either the CLI or Web method.

DMI Config - CLI Method

- 1. Access the x6010 through either a USB connection (see "Starting a USB Session" on page 41) or a Telnet session (see "Starting a Telnet Session" on page 43).
- 2. Set the Diagnostic Monitoring Interface receive preset power level for a fiber port. Type:

set dmi rx-power-preset-level=xx

where: xx is a preset level for Rx Power on the Fiber port, in the range of 1 to 65,535.

- 3. Press Enter. For example: set dmi rx-preset-power-level=10 and press Enter.
- 4. Display the DMI information. Type: **show dmi info** and press **Enter**. For example:

```
Agent III C1|S8|L1P2>set dmi rx-power-preset-level 10
Agent III C1|S8|L1P2>show dmi info
Diagnostic monitoring interface information:
DMI connector type:
                                       SFP/SFP+/SFP28
DMI indentifier:
DMI Nominal bit rate:
                                       1300*Mbps
DMI 9/125u Singlemode Fiber (k):
                                       N/A
DMI 9/125u Singlemode Fiber (m):
                                       N/A
DMI 50/125u Multimode Fiber (m):
                                       500*m
DMI 62.5/125u Multimode Fiber (m):
                                       30*10m
Copper(m):
                                       N/A
DMI fiber interface wavelength:
                                       850*nm
DMI temperature:
                                       34.7*C
                                       94.5*F
DMI temperature:
DMI temperature alarm:
                                       normal
DMI transmit bias current:
                                       4144*uA
DMI transmit bais alarm:
                                       normal
DMI Transmit power:
                                       204*uW
                                       -6.904*dBM
DMI Transmit power:
DMI Transmit power alarm:
                                       normal
DMI Receive power:
                                       0*uW
DMI Receive power alarm:
                                       normal
Error: Get DMI Vendor name no such object.
Error: Get DMI Vendor Part Number no such object.
```

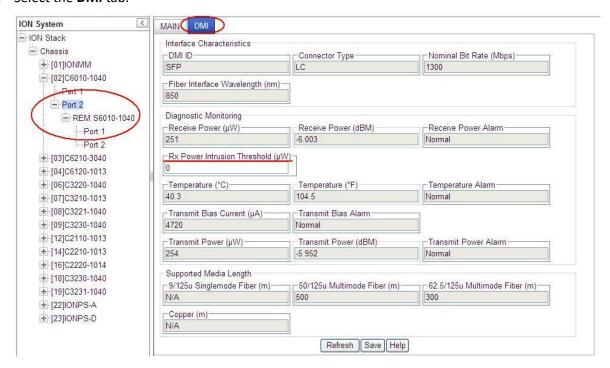
```
Error: Get DMI Vendor serial number no such object.

Error: Get DMI Vendor revision no such object.

Error: Get DMI Vendor date code no such object.

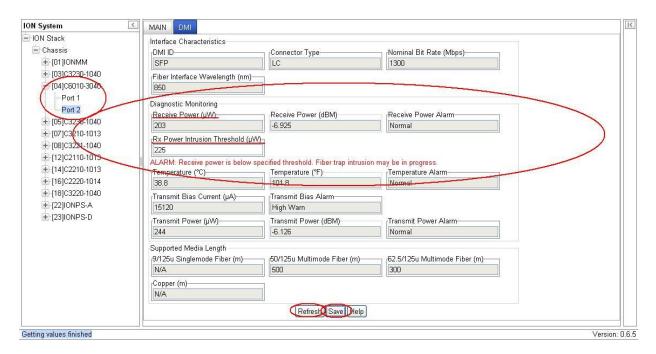
Error: Get DMI Vendor SFP type no such object.

Error: Get DMI Vendor OUI no such object.


DMI Receive power intrusion threshold: 10*uW

Agent III C1|S8|L1P2>
```

The DMI tab fields are described in Table 14 later in this section.


DMI Config – Web Method

- 1. Access the x6010 through the Web interface (see "Starting the Web Interface" on page 45).
- 2. Select the desired device and port.
- 3. Select the **DMI** tab.

The Interface Characteristics, Diagnostic Monitoring, and Supported Media Length sections display. See the table below for individual field / parameter descriptions.

- 4. Set the "Rx Power Intrusion Threshold" as required. This is a preset level for Rx Power on the Fiber port; if the DMI read value falls below the preset value, a potential intrusion is detected, and a trap is generated. The valid range is $0 65535 \mu W$. The default is 0.
- 5. Click the **Save** button to save any updated information.
- 6. Click the **Refresh** button to update the information displayed.
- 7. If the message "ALARM: Receive power is below specified threshold. Fiber trap intrusion may be in progress." displays, follow your organization's process for intrusion detection.

The **DMI** tab parameters are described in the table below.

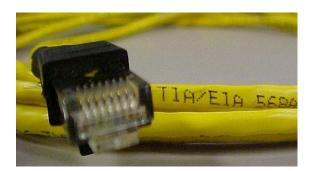
Table 13: DMI Parameters

Parameter	Possible Values	Description		
Interface Chara	cteristics			
DMI ID	Unknown, SFP/SFP+/SFP28, GBIC, SFP, Reserved, vendor- specific	Specifies the physical device from SFF-8472 Rev 9.5 Standard: 00h Unknown or unspecified 01h GBIC 02h Module/connector soldered to motherboard 03h SFP 04-7Fh Reserved 80-FFh Vendor specific		
Connector Type	LC, MT-RJ LC, SC, ST, RJ-45, or VF- 45, or unknown	The external optical or electrical cable connector provided as the interface. * MT-RJ: Media Termination - Recommended Jack for Duplex multimode connections. * LC: Lucent Connector or Local Connector for High-density connections, SFP transceivers. * SC: Subscriber Connector for Datacomm and Telecomm. * ST: BFOC Straight Tip / Bayonet Fiber Optic Connector for Multimode - rarely Singlemode (APC not possible). * VF-45: Snap connector for Datacom uses. See "Connector Types" section below.		
Nominal Bit Rate Mbps)	(measured rate)	Bitrate in units of 100Mbps (the sample screen above shows 1300, or 1.3 Gbps).		
Fiber Interface Wavelength (nM)	(measured wave- length)	The Nominal transmitter output wavelength at room temperature. The unit of measure is nanometers (the sample screen above shows 850 nm).		
Diagnostic Monitoring				
Receive Power (uW)	(measured power measurement)	Receive power on local fiber measured in microwatts (the sample screen above shows 203 uW).		
Receive Power (dBM)	(measured signal strength)	Receive power on local fiber measured in dBM (decibels relative to one milliwatt) which defines signal strength. The sample screen above shows -6.925dBM.		
Receive Power Alarm	Normal -1, Not Supported - 2, Low Warn - 3, High Warn - 4, Low Alarm - 6 High Alarm - 7	Alarm status for receive power on local fiber.		
Rx Power In- trusion Thresh- old (uW)	0 - 65535 μW	A configurable level for Rx Power on the Fiber port. If the DMI read value falls below the preset value, an intrusion is detected, and a trap is generated. The valid range is 0 - 65535 µW. The default is 0. Displays the message "ALARM: Receive power is below specified threshold. Fiber trap intrusion may be in progress." if the value falls below the specified threshold.		
Temperature (°C)	(measured temp.)	Temperature of fiber transceiver in tenths of degrees C (Celsius). The sample screen above shows 38.0°C.		
Temperature (°F)	(measured temp.)	Temperature of fiber transceiver in tenths of degrees F (Fahrenheit). The sample screen above shows 101.8 °F.		

Temperature Alarm	Normal -1, Not Supported - 2, Low Warn - 3, High Warn - 4, Low Alarm - 6 High Alarm - 7	Alarm status for temperature of fiber transceiver. An ionDMITemperatureEvt event is sent when there is a warning or alarm on DMI temperature
Transmit Bias Current (uA)	(measured current)	Transmit bias current on local fiber interface, in uA (microamperes). The sample screen above shows 15440 uA (microamps).
Transmit Bias Alarm	Normal -1, Not Supported - 2, Low Warn - 3, High Warn - 4, Low Alarm - 6 High Alarm - 7	Alarm status for transmit bias current on local fiber interface.
Transmit Power (uW)	(measured power)	Transmit power on local fiber measured in microwatts. The sample screen above shows 244 uW (microwatts).
Transmit Power (dBM)	(measured power)	Transmit power on local fiber measured in dBM (decibels relative to one milliwatt) which defines signal strength. The sample screen above shows -6.126 dBM.
Transmit Power Alarm	Normal -1, Not Supported - 2, Low Warn - 3, High Warn - 4, Low Alarm - 6 High Alarm - 7	Alarm status for transmit power on local fiber.

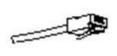
Supported Media Length				
9/125u Sin- glemode Fi- ber (m)	SM fiber length in meters or N/A	Specifies the link length that is supported by the transceiver while operating in single mode (SM) fiber. The unit of measure is meters (m). The sample screen above shows N/A, indicating the media is not applicable.		
50/125u Multimode Fiber (m)	MM fiber length in meters or N/A	Specifies the link length that is supported by the transceiver while operating in 50 micron Multimode (MM) fiber. The value is in meters. The sample screen above shows 500 meters as the supported media length.		
62.5/125u MM Fiber (m)	MM fiber length in meters or N/A	Specifies the link length that is supported by the transceiver while operating in 62.5 micron Multimode (MM) fiber. The value is in meters. The sample screen above shows 300 meters as the supported media length.		
Copper (m)	Copper cable length in meters or N/A	Specifies the link length that is supported by the transceiver while operating in copper cable. The value is in meters. The sample screen above shows N/A, indicating the media is not applicable.		

Connector Types


The DMI **Connector Type** field indicates the external optical or electrical cable connector provided as the interface. The information below is from SFF 8472 Rev 9.5.

Value	Description of connector
00h	Unknown or unspecified
01h	SC
02h	Fibre Channel Style 1 copper connector
03h	Fibre Channel Style 2 copper connector
04h	BNC/TNC
05h	Fibre Channel coaxial headers
06h	FiberJack
07h	LC
08h	MT-RJ
09h	MU
0Ah	SG
0Bh	Optical pigtail
0C-1Fh	Reserved
20h	HSSDC II
21h	Copper Pigtail
22h-7Fh	Reserved
80-FFh	Vendor specific

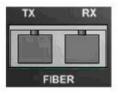
The LC, MT-RJ LC, SC, ST, and VF-45 connector types (jacks) are shown below.



A TIA-EIA 568A CAT 5 cable is shown below.

T1/E1/J1 Cable Connectors

Narrowband transmission facilities can be connected with a variety of cable connectors, depending on the type of equipment being installed. The various cable connectors used with narrowband transmission facilities are shown below.



T1 / E1 RJ-45 connector (UTP)

UTP / STP RJ45 copper media connection for shielded twisted pair (STP) or unshielded twisted pair (UTP) media connection.

T1 / E1 SFP connector (Fiber)
FIBER TX / RX: ST, SC or open SFP for fiber media connection.

100-X PORT 2; open SFP for fiber media connection.

E1 BNC connector (75-ohm coax)
COAX TX RX: PORT 1; Two BNC connectors: Coaxial cable ports for Coax Tx and Rx connections.
Coax is only supported on models with SFP.

T1 often uses DB-15 connectors or RJ-48 connectors if a high density of interfaces is required.

E1 systems commonly use a pair of BNC connectors (one for transmit, one for receive); E1 can also use DB-15 or RJ-48 connectors.

J1 facilities typically use DB-15 connectors.

Set Debug Level

You can use the CLI method to define the system debug level.

1. Access the NID through either a USB connection (see "Starting a USB Session" on page 41) or a Telnet session (see "Starting a Telnet Session" on page 43).

2. Set the desired debug level. Type:

```
set dbg level=<0-2>
```

where:

0=debug Severity level 0 (Emergency: system is unusable - e.g., serious hardware failure or imminent power failure).

1=debug Severity level 1 (Alert: action must be taken immediately).

2=debug Severity level 2 (Critical condition).

3. Press Enter. For example:

```
C1|S5|L1D>set dbg level 0
C1|S5|L1D>set dbg level 1
C1|S5|L1D>set dbg level 2
C1|S5|L1D>
```

DIP Switches and Jumper Settings

The x6010 NID has on-board components that can be used to configure device operation, typically at the direction of a TN technical support specialist. In most cases, the factory default settings provide optimal configuration settings; however, DIP switch and/or jumper setting changes may be required for operating mode changes or troubleshooting purposes. Multi-position DIP switches allow configuring the x6010 for varying network conditions. Use a small flat blade screwdriver or similar device to change DIP switch settings for on-site configuration.

PCB Identification

This section covers the following PCBs (printed circuit boards):

- 1. x6010 SIC PCB 11354 Rev. 05 (this information is silkscreened at the top center of the PCB).
- 2. x6010 NID PCB 11354 Rev. A (this information is silkscreened at the top center of the PCB).
- 3. x6010-10xx PCB 11381 Rev. A (this information is silkscreened at the top center of the PCB).

Note: Do not change the configurable items except at the direction of a TN technical support specialist.

C6010 PCB

PCB: 11354 Rev. A (information is silkscreened at the top center of the PCB).

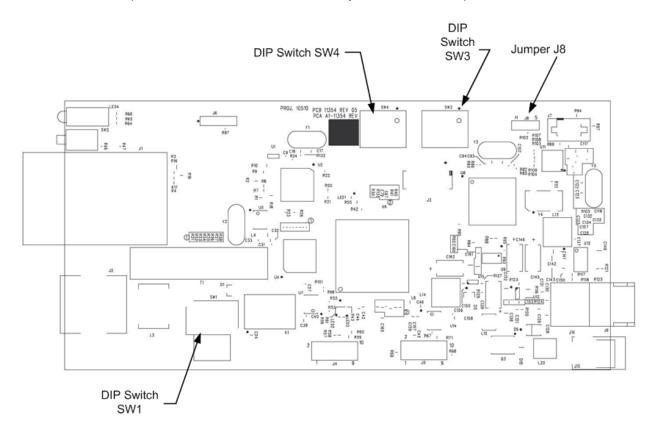


Figure 19: x6010 PCB Layout

S6010 NID Switch Locations

The S6010 configuration information is silkscreened on the top of the NID.

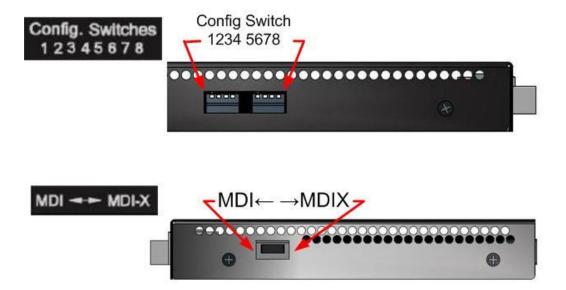
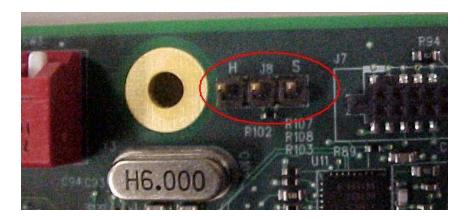


Figure 20: x6010 Switch Locations

DIP Switch SW1 - MDI ← → MDI-x Switch

MDI (Media Dependent Interface) is the standard wiring for end stations, and MDIX (Media Dependent Interface with Crossover) is the standard wiring for hubs and switches. The x6010 device's AutoCross feature makes it possible for hardware to automatically correct errors in cable selection.

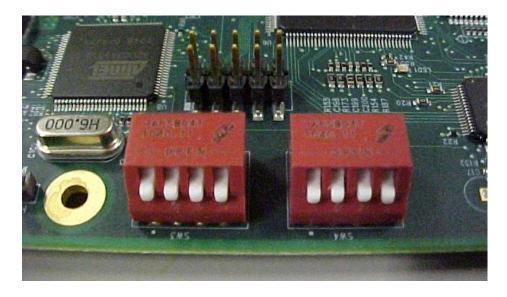

MDI/MDI-X selection for T1/E1 cable:

- MDI (left position): Straight-Through cable.
- MDI-X (right position): Crossover cable.

J8 - HW-SW Mode Jumper

Jumper J8 defines the x6010 Hardware / Software mode setting. Use the shorting plug to jumper (short):

- Pins 1 and 2 for Hardware Mode. In this mode, the <u>hardware</u> defines the x6010 configuration.
- Pins 2 and 3 for Software Mode. In this mode, the <u>software</u> defines the x6010 configuration (the default setting).



The J8 factory default setting is Software mode (pins 2 and 3 jumpered) as shown above.

Note that in Hardware mode you cannot make x6010 configuration changes from the Web interface, as the screen fields are all grayed out. You can enter CLI commands with the x6010 in Hardware mode.

DIP Switch SW3 - LBO

DIP Switch SW3 defines LBO. The FCC Part 68 Regulation specifies four grades of attenuation with a step of 7.5 dB. Three LBOs are used to implement the pulse attenuation.

DIP Switch SW3 (left) - LBO

SW3-1, SW3-2, SW3-3: Line configuration setting in T1 mode (see "DIP Switch SW4" below)

T1/Short Haul Mode (when SW4-4 = H (Up), SW4-3 = H (Up))

SW3-1, SW3-2, SW3-3: DSX-1 condition

Up, Up, Up: J1 Mode, 110ohm cable (future support);

Up, Up, Down: DSX-1, 162.5-200m,(533-655') 100ohm cable;

Up, Down, Up: DSX-1, 121.6-162.5m (399-533') 100ohm cable;

Up, Down, Down: DSX-1, 81-121.6m (266-399') 100ohm cable;

Down, Up, Up: DSX-1, 40.5-81m (133-266') 100ohm cable;

Down, Up, Down: DSX-1, 0-40.5m (0-133') 100ohm cable;

Down, Down, X: Do NOT Care.

T1/Long Haul Mode (when SW4-4 = H (Up), SW4-3 = L (Down))

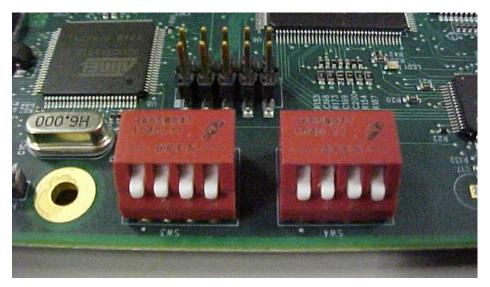
SW3-1, SW3-2: DS-1 condition

Up, Up: -22.5db 100ohm cable;

Up, Down: -15.0db 100ohm cable;

Down, Up: -7.5db 100ohm cable;

L, L: 0.0db 100ohm cable.


Switch3-4 Inband loopback selection:

Up (H): Disabled Down (L): Enabled

<u>Note</u> that PCB builds may vary, and that the particular DIP switch used on your PCB may be labeled differently than shown here. The DIP switch labels **UP**, **H**(igh) and **OPEN** typically indicate the same setting, while **Down**, **L**(ow), and **Closed** all indicate the same configuration setting.

DIP Switch SW4 - TAOS - T1-E1 Mode Select

DIP switch SW4 defines TAOS, T1-E1 Mode, T1 Lon/Short Haul, and T1/E1 Mode selection.

DIP Switch SW4 - TAOS (right)

SW4-1: TAOS on Copper port :

Up = Disable,

Down = Enable;

SW4-2: TAOS on fiber port:

Up = Disable,

Down = Enable;

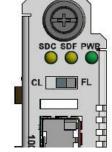
SW4-3: Long haul or Short haul selection; only valid for T1 mode:

Up = Short haul,

Down = Long haul;

SW4-4: T1/E1 Mode selection :

Up = T1,


Down = E1; in E1 mode, cable configuration is automatically set to 120 ohms.

DIP Switch SW2 - Fiber Loopback Test -Normal - - Copper Loopback Test Mode

DIP Switch SW2 selects between Fiber Loopback test mode, Normal operating mode, and Copper Loopback test mode. The Normal (center) position is the default setting.

SW2 Loopback Switch:

- 1 Copper Loopback (CL).
- 2 Normal Operation (center position). No loopback (default setting).
- 3 Fiber Loopback (FL). Enable loopback on the local fiber interface.

Jumpers J1, J5, J9, J14, and J15 are not configurable in the field.

x6010-10xx PCB (C6010 with SFP and BNC)

PCB: 11381 Rev. A (information is silkscreened at the top center of the PCB).

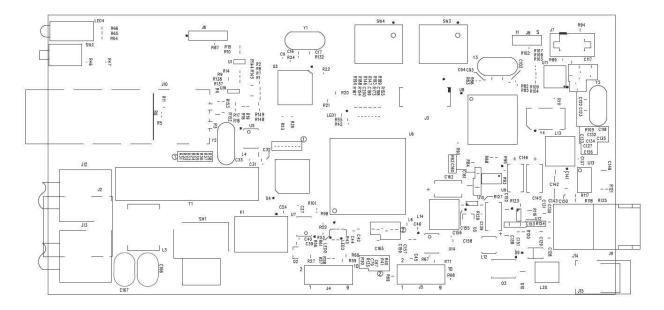


Figure 21: x6010-10xx Layout

Differences from 11354_03: 1. Add BNC connector; 2. Change Fiber connector to SFP; 3. Add R143. See the previous section for DIP switch and Jumper information.

In-band Loopback Code Detect Procedure

This function enables detection and loopback of the fiber interface based on NIU Facility 2 (FAC2) loopback codes. Certain test devices (e.g., T-BERD 2310) can send in-band loopback codes to the local copper (TP) interface, which are then transmitted to the remote device via the fiber. The remote device can detect and react to this and activate and de-activate the loopback codes. For detection, these codes must be sent for at least 5 seconds. Bit 5 loop codes are as follows:

Loop UP code: 5-bit '11000'Loop DOWN code: 5-bit '11100'

The figure below shows data paths after the remote device receives the loop activate code (5-bit 11000) for 5 seconds with SW 3 Switch 3-4 in the DOWN position.

Figure 22: Initiate a Loopback from a Test Set

The Inband Loopback Code Detector can track loopback activate/deactivate codes in a framed or unframed T1/J1 data stream. The received data stream is compared with the target activate/deactivate code whose length and the content are pre-defined. When the received data stream matches the target activate/deactivate code and repeats for 4 seconds, this register field indicates the detection of the inband loopback code.

Register fields IBLBA_S and IBLBD_S: In-band Loopback activate / deactivate code receive (from fiber) status:

- **0**: No Inband Loopback deactivate signal is detected (default0
- 1: The Inband Loopback deactivate signal is detected and then received over a period of more than 40 ms (T1) or 30ms (E1) with BER < 0.01.

The default setting is 0 (No Inband Loopback deactivate signal is detected).

- 1. Set DIP Switch SW3 Switch 3-4 (Inband loopback selection) to the Down (L): Enabled position.
- 2. See the specific test device (e.g., T-BERD 2310) documentation for the procedure to send in-band loopback codes to the local copper (TP) interface.

Third Party Troubleshooting Tools

This section provides information on third party troubleshooting tools for Windows, Linux, etc. Note that this section may provide links to third party web sites. Transition Networks is not responsible for any third party web site content or application. The web site information was accurate at the time of publication, but may have changed in the interim.

- Ipconfig and ifconfig
- Windows Network Connections
- Ping
- Telnet
- PuTTy
- Tracert (Traceroute)
- Netstat
- Winipcfg
- Nslookup
- Dr. Watson

Note: IETF RFC 2151 is a good source for information on Internet and TCP/IP tools at ttp://ftp.rfc-editor.org/in-notes/rfc2151.txt.

Ipconfig

Ipconfig (Windows Vista): Use the procedure below to find your IP address, MAC (hardware) address, DHCP server, DNS server and other useful information under Windows Vista.

- 1. Go to the start menu and type **command** in the box.
- 2. Right-click on Command Prompt and click **Run as administrator**. If a User Account Control window pops up, click **Continue**.
- 3. At the C:\> prompt type ipconfig and press Enter. Your IP address, subnet mask and default gateway display. If your IP address is 192.168.x.x, 10.x.x.x, or 172.16.x.x, then you are receiving an internal IP address from a router or other device.
- 4. For more detailed information, type **ipconfig /all** at the prompt. Here you can get the same information as **ipconfig** plus your MAC (hardware) address, DNS and DHCP server addresses, IP lease information, etc.

Note: If you are receiving a 169.254.x.x address, this is a Windows address that generally means your network connection is not working properly.

Ipconfig (Windows XP): **ipconfig** (Internet Protocol Configuration) in Windows is a console application that displays all current TCP/IP network configuration values and refreshes Dynamic Host Configuration Protocol DHCP and Domain Name System DNS settings.

Use the **ipconfig** command to quickly obtain the TCP/IP configuration of a computer.

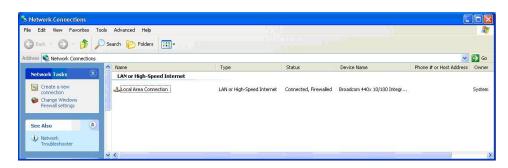
- 1. Open a Command Prompt. Click Start, point to Programs, point to Accessories, and then click Command Prompt.
- 2. Type **ipconfig** and press Enter. The Windows IP Configuration displays:

- 3. Make sure that the network adapter for the TCP/IP configuration you are testing is not in a Media disconnected state.
- 4. For more information, use the /all parameter (type ipconfig /all and press Enter).

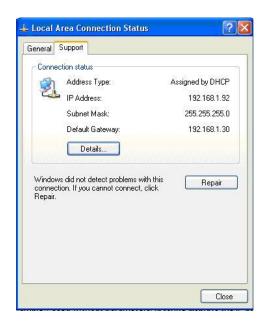
The **ipconfig** command is the command-line equivalent to the **winipcfg** command, which is available in Windows ME, Windows 98, and Windows 95. Windows XP does not include a graphical equivalent to the **winipcfg** command; however, you can get the equivalent functionality for viewing and renewing an IP address using Windows' Network Connections (see below).

ifconfig

1. Verify that the machine's interfaces are up and have an IP address using the ifconfig command:


Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:8744 errors:0 dropped:0 overruns:0 frame:0
TX packets:8744 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:892258 (871.3 Kb) TX bytes:892258 (871.3 Kb)

The above machine is running normally. The first line of output shows that the Ethernet interface eth0 has a layer 2 (MAC or hardware) address of 00:0C:6E:0A:3D:26. This confirms that the device driver is able to connect to the card, as it has read the Ethernet address burned into the network card's ROM. The next line shows that the interface has an IP address of 192.168.168.11, and the subnet mask and broadcast address are consistent with the machine being on network 192.168.168.0.


Windows Network Connections

In Windows XP you can view and renew an IP address using Windows Network Connections.

1. Open Network Connections from **Start** \rightarrow **Control Panel** \rightarrow **Network Connections**.

- 2. Right-click a network connection.
- 3. Click Status.
- 4. Click the **Support** tab. Your connection status information displays.

5. Click the **Details** button to display the Physical Address, IP Address, Subnet Mask, Default Gateway, DHCP Server, Lease Obtained, Lease Expires, and DNS Server addresses.

Ping

Use the **ping** command to test a TCP/IP configuration by using the ping command (in Windows XP Professional in this example). Used without parameters, ipconfig displays the IP address, subnet mask, and default gateway for all adapters.

- 1. Open a Command Prompt. To open a command prompt, click **Start**, point to **Programs**, point to **Accessories**, and then click **Command Prompt**.
- 2. At the command prompt, ping the loopback address by typing **ping 127.0.0.1**.

```
C:\Documents and Settings\jschierman\ping 127.0.0.1

Pinging 127.0.0.1 with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Ping statistics for 127.0.0.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\Documents and Settings\jschierman>_
```

- 3. Ping the IP address of the computer.
- 4. Ping the IP address of the default gateway. If the **ping** command fails, verify that the default gateway IP address is correct and that the gateway (router) is operational.
- 5. Ping the IP address of a remote host (a host on a different subnet). If the **ping** command fails, verify that the remote host IP address is correct, that the remote host is operational, and that all of the gateways (routers) between this computer and the remote host are operational.
- 6. Ping the IP address of the DNS server. If the **ping** command fails, verify that the DNS server IP address is correct, that the DNS server is operational, and that all of the gateways (routers) between this computer and the DNS server are operational.

If the **ping** command is not found or the command fails, you can use Event Viewer to check the System Log and look for problems reported by Setup or the Internet Protocol (TCP/IP) service.

The **ping** command uses Internet Control Message Protocol (ICMP) Echo Request and Echo Reply messages. Packet filtering policies on routers, firewalls, or other types of security gateways might prevent the forwarding of this traffic.

Telnet

Telnet is a simple, text-based program that lets you connect to another computer via the Internet. If you've been granted the right to connect to that computer by that computer's owner or administrator, Telnet will let you enter commands used to access programs and services that are on the remote computer, as if you were sitting right in front of it.

The Telnet command prompt tool is included with the Windows Server 2003 and Windows XP operating systems. See the related OS documentation and helps for more information. Note that if you are only using computers running Windows, it may be easier to use the Windows Remote Desktop feature. For more information about Remote Desktop, see the related OS documentation and helps.

Telnet Client

By default, Telnet is not installed with Windows Vista or Windows 7, but you can install it by following the steps below.

- 1. Click the **Start** button, click **Control Panel**, click **Programs**, and then select **Turn Windows features on or off**. If prompted for an administrator password or confirmation, type the password or provide confirmation.
- 2. In the **Windows Features** dialog box, check the **Telnet Client** checkbox.
- 3. Click **OK**. The installation might take several minutes.

After Telnet Client is installed, open it by following the steps below.

- 1. Clicking the **Start** button, type **Telnet** in the Search box, and then click **OK**.
- 2. To see the available telnet commands, type a question mark (?) and then press **Enter**.

Telnet Server

In Windows Server 2003 for most Telnet Server functions, you do not need to configure Telnet Server options to connect a Telnet client to the Windows Server 2003-based Telnet Server. However, in Windows Server 2003 you must configure Telnet Server options to be able to do certain functions.

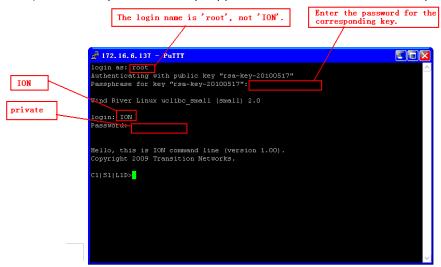
For example, the following command uses the credentials of the user who is currently logged on to the client to create a Telnet connection on port 23 with a host named server01 telnet server01

The following example creates the same Telnet connection and enables client-side logging to a log file named c:\telnet_logfile telnet -f c:\telnet_logfile server01

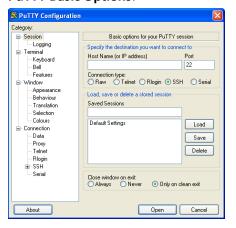
The connection with the host remains active until you exit the Telnet session (by using the **Exit** command), or you use the Telnet Server administration tool to terminate the Telnet session on the host.

For more information, see the Windows Server TechCenter at http://technet.microsoft.com/en-us/library/cc787407(WS.10).aspx.

1. If you try to enable and install Telnet in Windows 7, and the message "An error has occurred. Not all of the features were successfully changed" displays, one workaround is to use a third party Telnet client, such as PuTTY, which also supports recommended SSH client.


PuTTY

Putty is a simple, free, but excellent SSH and Telnet replacement for Windows. The Putty SSH and telnet client was developed originally by Simon Tatham for the Windows platform. Putty is open source software that is developed and supported by a group of volunteers. Putty has been ported to various other operating systems. Official versions exist for some Unix-like platforms, with on-going ports to Mac OS and Mac OS X.


The PuTTY terminal emulator application also works as a client for the SSH, Telnet, rlogin, and raw TCP computing protocols. For PuTTY legal and technical details, see the PuTTY download page at http://putty.org/ or at http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

Note:

- 1) When the user-public key is loaded into the IONMM successfully, the key will take effect immediately; you do not need to restart the SSH server.
- 2) The ION system supports SSH2 keys only; SSH1 keys are not supported. When generating using puttyGen.exe, do not select the SSH1 keys.
- 3) The ION system currently supports one user named 'root' with public key authentication.

PuTTY Basic Options:

PuTTY SSH Options:

Tracert (Traceroute)

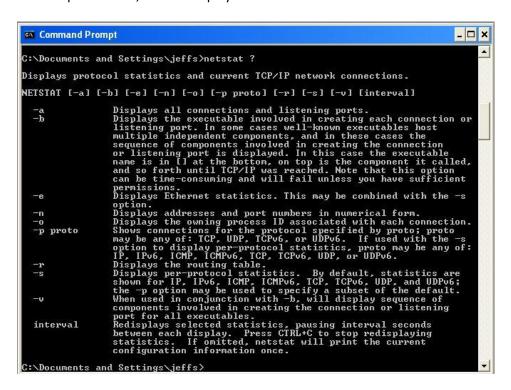
Traceroute is a computer network tool used to determine the route taken by packets across an IP network. 'Tracert" (pronounced "traceroute") sends a test network message from a computer to a designated remote host and tracks the path taken by that message.

Tracert is a Windows based tool that helps test your network infrastructure. In this article we will look at how to use tracert while trying to troubleshoot real world problems. This will help to reinforce the tool's usefulness and show you ways in which to use it when working on your own networks.

The traceroute tool is available on almost all Unix-like operating systems. Variants with similar functionality are also available, such as tracepath on modern Linux installations and tracert on Microsoft Windows operating systems. Windows NT-based operating systems also provide **pathping**, which provides similar functionality.

The tracert TCP/IP utility allows you to determine the route packets take through a network to reach a particular host that you specify. Tracert works by increasing the "time to live" (TTL) value of each successive packet sent. When a packet passes through a host, the host decrements the TTL value by one and forwards the packet to the next host. When a packet with a TTL of one reaches a host, the host discards the packet and sends an ICMP time exceeded. Tracert, if used properly, can help you find points in your network that are either routed incorrectly or are not existent at all.

The Tracert Windows based command-line tool lets you trace the path that an IP packet takes to its destination from a source. Tracert determines the path taken to a destination by sending ICMP (Internet Control Message Protocol) Echo Request messages to the destination. When sending traffic to the destination, it incrementally increases the TTL (Time to Live) field values to help find the path taken to that destination address.


Tracert options include:

- -? which displays help at the command prompt.
- -d which prevents tracert from attempting to resolve the IP addresses of intermediate routers to their names (this speeds up the display of tracert results). Using the -d option helps when you want to remove DNS resolution. Name servers are helpful, but if not available, incorrectly set, or if you just want the IP address of the host, use the -d option.

Netstat

Netstat (network statistics) is a command-line tool that displays network connections (both incoming and outgoing), routing tables, and a number of network interface statistics. It is available on UNIX, Unix-like, and Windows NT-based operating systems.

The **netstat** tool is used for finding network problems and determining the amount of traffic on the network as a performance measurement. It displays active TCP connections, ports on which the computer is listening, Ethernet statistics, the IP routing table, IPv4 statistics (for the IP, ICMP, TCP, and UDP protocols), and IPv6 statistics (for the IPv6, ICMPv6, TCP over IPv6, and UDP over IPv6 protocols). When used without parameters, **netstat** displays active TCP connections.

Note: parameters used with this command must be prefixed with a hyphen (-) and NOT a slash (/):

- -a Displays all active TCP connections and the TCP and UDP ports on which the computer is listening.
- **-b** Displays the binary (executable) program's name involved in creating each connection or listening port. (Windows XP, 2003 Server only not Microsoft Windows 2000 or other non-Windows operating systems).
- **-e** Displays Ethernet statistics, such as the number of bytes and packets sent and received.
- -f Displays fully qualified domain names (FQDN) for foreign addresses.(not available under Windows)
- -i Displays network interfaces and their statistics (not available under Windows).
- -o Displays active TCP connections and includes the process ID (PID) for each connection. You can find the application based on the PID on the Processes tab in Windows Task Manager. This parameter is available on Windows XP, 2003 Server (but not on Windows 2000).
- -p (Windows): Protocol: Shows connections for the protocol specified by Protocol. In this case, the Protocol can be tcp, udp, tcpv6, or udpv6. If this parameter is used with -s to display statistics by protocol, Protocol can be tcp, udp, icmp, ip, tcpv6, udpv6, icmpv6, or ipv6.
- -p (Linux) Process: Show which processes are using which sockets (you must be root to do this).

33493 Rev. E

Winipcfg

The **winipcfg** command is available in Windows ME, Windows 98, and Windows 95 to review your current TCP/IP network protocol settings. Follow these steps to view your current TCP/IP settings using **winipcfg**:

- 1. Click the Start button and then click Run.
- 2. Type winipcfg in the Open box, and then click OK. Your current TCP/IP settings are displayed.
- 3. To view additional information, click More Info.

Note: The Winipcfg display is not updated dynamically. To view changes, quit **winipcfg** and then run it again. If your IP address was dynamically allocated by a DHCP server, you can use the Release and Renew buttons to release and renew the IP address.

The following information is displayed by the **winipcfg** tool.

Adapter Address: This string of hexadecimal numbers represents the hard-coded identification number assigned to the network adapter when it was manufactured. When you are viewing the IP configuration for a PPP connection using Dial-Up Networking, the number is set to a default, meaningless value (because modems are not hard-coded with this type of address).

IP Address: This is the actual IP networking address that the computer is set to. It is either dynamically assigned to the computer upon connection to the network, or a static value that is manually entered in TCP/IP properties.

Subnet Mask: The subnet mask is used to "mask" a portion of an IP address so that TCP/IP can determine whether any given IP address is on a local or remote network. Each computer configured with TCP/IP must have a subnet mask defined.

Default Gateway: This specifies the IP address of the host on the local subnet that provides the physical connection to remote networks, and is used by default when TCP/IP needs to communicate with computers on other subnets.

Click **More Info** to display the following settings:

DHCP Server: This specifies the IP address of the DHCP server. The DHCP server provides the computer with a dynamically assigned IP address upon connection to the network. Clicking the Release and Renew buttons releases the IP address to the DHCP server and requests a new IP address from the DHCP server.

Primary and Secondary WINS Server: These settings specify the IP address of the Primary and Secondary WINS servers (if available on the network). WINS servers provide a service translating NetBIOS names (the alphanumeric computer names seen in the user interface) to their corresponding IP address.

Lease Obtained and Lease Expires: These values show when the current IP address was obtained, and when the current IP address is due to expire. You can use the Release and Renew buttons to release and renew the current IP address, but this is not necessary because the DHCP client automatically attempts to renew the lease when 50 % of the lease time has expired.

Nslookup

nslookup is a computer program used in Windows and Unix to query DNS (Domain Name System) servers to find DNS details, including IP addresses of a particular computer, MX records for a domain and the NS servers of a domain. The name nslookup means "name server lookup". A common version of the program is included as part of the BIND package.

Microsoft Windows 2000 Server, Windows 2000 Advanced Server, and Windows NT Server 4.0 Standard Edition provide the **nslookup** tool.

Windows' nslookup.exe is a command-line administrative tool for testing and troubleshooting DNS servers. This tool is installed along with the TCP/IP protocol through the Control Panel.

Nslookup.exe can be run in two modes: interactive and noninteractive. Noninteractive mode is used when just a single piece of data is needed.

1. The syntax for noninteractive mode is:

nslookup [-option] [hostname] [server]

2. To start Nslookup.exe in interactive mode, simply type "nslookup" at the command prompt:

C:\> nslookup

Default Server: nameserver1.domain.com

Address: 10.0.0.1

3. Type "help" or "?" at the command prompt to generate a list of available commands.

Notes:

- The TCP/IP protocol must be installed on the computer running Nslookup.exe.
- At least one DNS server must be specified when you run the IPCONFIG /ALL command from a command prompt.
- Nslookup will always devolve the name from the current context. If you fail to fully qualify a name
 query (i.e., use a trailing dot), the query will be appended to the current context. For example, if the
 current DNS settings are att.com and a query is performed on www.microsoft.com; the first query
 will go out as www.microsoft.com; the first query
 will go out as www.microsoft.com; the first query
 will go out as www.microsoft.com; the first query
 will go out as www.microsoft.com; the first query
 will go out as www.microsoft.com; the first query
 will go out as www.microsoft.com; the first query
 will go out as www.microsoft.com; the first query
 will go out as www.microsoft.com; the first query
 will go out as www.microsoft.com, att.com because of Nslookup.

Dr. Watson

Dr. Watson detects information about Windows system and program failures and records the information in a log file. Dr. Watson starts automatically at the event of a program error. To start Dr. Watson, click **Start**, click **Run**, and then type **drwtsn32**. To start Dr. Watson from a command prompt, change to the root directory, and then type **drwtsn32**.

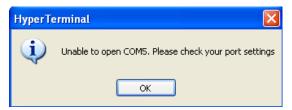
When a program error occurs, Dr. Watson creates a log file (Drwtsn32.log) which contains:

- The line Application exception occurred:.
- Program error information.
- System information about the user and the computer on which the program error occurred.
- The list of tasks that were running on the system at the time that the program error occurred.
- The list of modules that the program loaded.
- The state dump for the thread ID that is listed.
- The state dump's register dump.
- The state dump's instruction disassembly.
- The state dump's stack back trace.
- The state dump's raw stack dump.
- The symbol table.

The default log file path is:

C:\Documents and Settings\All Users\Application Data\Microsoft\Dr Watson.

The default Crash Dump path is:


C:\Documents and Settings\All Users\Application Data\Microsoft\Dr Watson\user.dmp.

Third Party Tool Messages

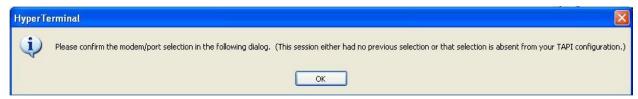
This section discusses messages generated by HyperTerminal, Ping, and Telnet during ION system installation, operation and configuration.

HyperTerminal Messages

Message: Unable to open COM x. Please check your port settings.

Response:

- 1. Verify your computer's **Ports (COM & LPT)** setting. See "Configuring HyperTerminal" on page 53.
- 2. Use the **Computer Management > Device Manager > Troubleshooter** button located on the **General** tab in **Properties**.
- 3. Unplug and re-plug the USB connector on the IONMM card.
- **4.** If the problem persists, contact Technical Support. See Contact Us on page 241.


Message: Windows has reported a TAPI error. Use the Phone and Modem Options icon in the Control Panel to ensure a modem is installed. Then restart HyperTerminal.

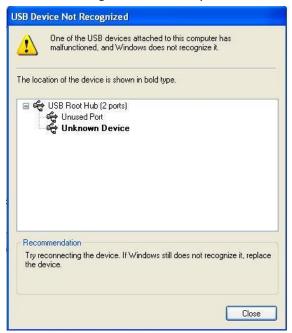
Response:

- 1. Click **OK** to close the HyperTerminal error dialog box.
- 2. Try opening an existing HyperTerminal connection (File > Open).
- 3. Verify your computer's Ports (COM & LPT) setting. See "Configuring HyperTerminal" on page 53.
- 4. Use the **Computer Management > Device Manager > Troubleshooter** button on the **General** tab in **Properties**.
- 5. Unplug and re-plug the USB connector on the IONMM card.
- 6. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: Please confirm the modem/port selection in the following dialog. (This session either had no previous selection or that selection is absent from your TAPI configuration.)

Response:

- 1. Verify the HyperTerminal configuration. See "Configuring HyperTerminal" on page 65 (e.g., verify your computer's Ports (COM & LPT) setting).
- 2. Use the **Computer Management > Device Manager > Troubleshooter** button located on the **General** tab in **Properties**.
- 3. Unplug and re-plug the USB connector on the NID.
- 4. Retry the operation. See "Start a USB Session in HyperTerminal and Log In " on page 72.
- 5. If the problem persists, contact Technical Support. See Contact Us on page 241.


Message: USB Device Not Recognized

One of the USB devices attached to this computer has malfunctioned, and Windows does not recognize it. For assistance in solving this problem, click this message.

Response:

1. Click message icon in the tray. A Windows recommendation dialog displays.

- 2. Click Close to close the dialog.
- 3. Try reconnecting the device to the same USB port on the console device (PC).
- 4. Try reconnecting the device to a different USB port on the console device (PC) if available.

Ping Command Messages

Message: Request timed out.

```
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\jeffs>ping 192.168.1.10

Pinging 192.168.1.10 with 32 bytes of data:

Request timed out.

Ping statistics for 192.168.1.10:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Meaning: The Ping command failed.

Recovery:

- 1. Verify the connection, verify correct IP address entry, and retry the operation.
- 2. Verify if the default IP address has changed using the Ipconfig (or similar) command.

Telnet Messages

Message: Could not open connection to the host, on port 23: Connect failed.

```
C:\Documents and Settings\jeffs>telnet 192.168.10.1
Connecting To 192.168.10.1...Could not open connection to the host, on port 23:
Connect failed
C:\Documents and Settings\jeffs>_
```

Meaning: The attempted Telnet connection failed.

- 1. Verify the physical connection, verify correct IP address entry, and retry the operation.
- 2. Check if the default IP address has changed using the Ipconfig (or similar) command.

Message: Invalid location parameters, cannot find the physical entity!

```
C1¦S7¦L1AP3¦L2D>go c=1 s=7 l1ap=3 l2ap=3 l3d
Invalid location parameters, cannot find the physical entity!
```

Meaning: 1) The **go** command you entered includes a location that does not exist or that you entered incorrectly. 2) The NID is in the process of a reset operation; wait one minute and then re-try the function.

Recovery:

- 1. Run the **stat** command to verify your configuration.
- 2. Click the plus sign [+] next to **ION Stack** to unfold the "ION Stack" node in the left tree view to refresh device status.
- 3. Click the plus sign [+] next to **Chassis** to unfold the chassis devices.

- 4. Compare the **stat** command results to the Web interface tree view configuration information.
- 5. Re-run the **stat** command with the correct location parameters.
- 6. Ping the device in question.
- 7. Unplug and re-plug the USB connector on the IONMM card.
- 8. If the problem persists, contact Technical Support. See Contact Us on page 241.

Message: Unknown command!

```
C1¦S1¦L1D>go c=1 s=7 13ap=1 11d
Unknown command?
```

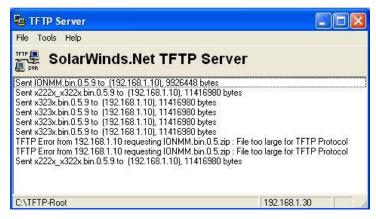
Meaning: The command you entered is not supported, or you entered the wrong command format / syntax.

- 1. Verify the CLI command syntax.
- 2. See "Section 6: Command Line Interface (CLI) Reference" on page 125.

TFTP Server Messages

Messages like the ones below may display during TFTP Server operation, depending on the TFTP Server package that you selected.

Message: File does not exist



Meaning: A TFTP Server error - the TFTP Server Address that you specified does not contain the Firmware File Name specified.

Recovery:

- 1) Verify the TFTP server's correct file location (e.g., local disk at *C*:*TFTP-Root*).
- 2) Verify the filename / extension.
- 3) Check the TFTP Server's online helps for suggestions.

Message: File too large for TFTP Protocol

Meaning: A TFTP Server error - you tried to upload a file (e.g., IONMM.bin.0.5 - 50Mb) but the TFTP server failed. The file you tried to upload via the TFTP server exceeded the file size capability.

- 1) Check if some extra files ended up in the zip folder some repeated 6 FW files total.
- 2) Remove some of the files from the zip folder and try the upload again.
- 3) Send the remaining files in a separate file.
- 4) Check the TFTP Server's online helps for suggestions.

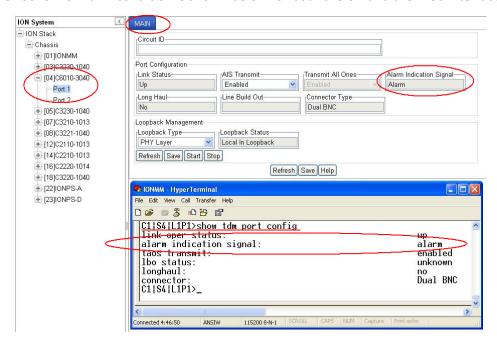
PuTTY Messages

Messages like the ones below may display during PuTTY (or similar package) operation, depending on the package that you selected.

Message: Server refused key

Meaning: You can connect to a secure telnet session using password authentication, but when you try to connect using public key authentication, you receive a "*Server refused our key*" message on the client (PuTTy) session. For example, you generated a public/private key (using Puttygen) and saved them, loaded the client public key into the IONMM via TFTP, and enabled SSH. The PuTTY SSH Authentication pointed to the saved private key. You set the auto-log on user name to root as suggested, but when you activated PuTTY, after 20-30 seconds, the refusal message displayed and PuTTY reverted back to password authentication (the default).

- 1. When generating using *puttyGen.exe*, select the SSH2 keys do not select the SSH1 keys.
- 2. Log in to PuTTy as 'root' with the public key authentication.
- 3. Use the online helps and documentation to set up Putty as suggested.
- 4. See the "PuTTY" section notes on page 228.

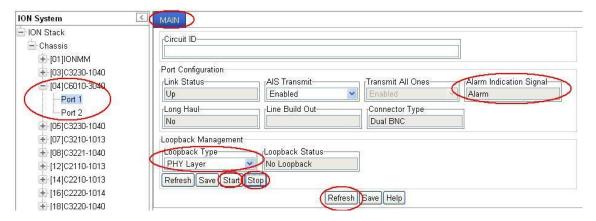

Alarm Indication Signal – Alarm Condition

In T1 mode, the criteria for declaring/clearing AIS detection are in compliance with the ANSI T1.231.

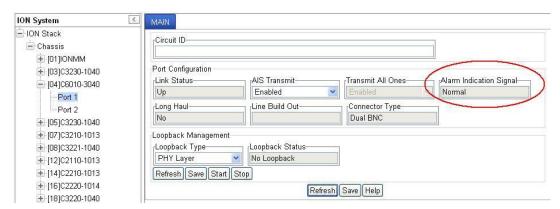
In E1 mode, the criteria for declaring/clearing AIS detection comply with the ITU G.775 or the ETSI 300233, as selected. The function is implemented in the LIU chip. When in E1 mode, application software may select the AIS condition by changing the value in the LIU register accordingly. The criteria for AIS detection declaring and clearing is shown below.

	ITU G.755 for E1 (LAC bit is set to '0' by default)	ETSI 300233 for E1 (LAC bit is set to '1')	ANSI T1.231 for T1/J1
AIS detected	Less than 3 zeros contained in each of two consecutive 512-bit streams are received	Less than 3 zeros contained in a 512-bit stream are received	Less than 9 zeros contained in an 8192-bit stream (a ones density of 99.9% over a period of 5.3 ms)
AIS cleared	3 or more zeros contained in each of two consecutive 512-bit streams are received	3 or more zeros contained in a 512-bit stream are received	9 or more zeros contained in an 8192-bit stream are received

The x6010 AIS Alarm condition is shown below for both the CLI and the Web interface.



To clear the AIS Alarm condition from the CLI:


- 1. Start (initiate) the TDM Loopback operation. Type set tdm loopback oper=init and press Enter.
- 2. Stop the TDM Loopback operation. Type set tdm loopback oper stop and press Enter.
- 3. Verify that the condition changed from *alarm* to *normal*. Type **show tdm port config** and press **Enter**.

For example:

To clear the AIS **Alarm** condition via the Web interface:

- 1. In the Loopback Type field select PHY Layer.
- 2. Click the Start button.
- 3. Click the **Stop** button.
- 4. Click the Refresh button.

5. Verify that the **Alarm Indication Signal** field has changed from **Alarm** to **Normal**.

LOS Detection

The x6010 LOS (Loss of Signal) detector monitors the amplitude of the incoming signal level and pulse density of the received TIP/RING signals. A LOS is detected when the incoming signal has "no transitions". The LOS is cleared when the incoming signal has "transitions". The x6010 LOS function is implemented in the LIU chip, but the x6010 application software may get the LOS status via interface with the FPGA. The x6010 LOS detection is provided via link down and link up traps and **show** commands.

T1 Error Events and Alarm Conditions

There are error events specific to T1, and alarm conditions specific to DS4 / ESF that are generated at the system level. Basic responses include:

- 1. Check all available logs and reports for related troubleshooting information.
- 2. Check the x6010 NID connections (see "Section 2: Installation and System Setup" on page 36) at the near-end and far-end.
- 3. Check all cable runs for damaged cable, etc.
- 4. Verify proper operation of other network devices.
- 5. Check the x6010 NID configuration; see "Section 4: Configuration" on page 72.

T1 Error Events

ANSI T1.403 terminal equipment (CSU) transmits Performance Report messages towards the network every second. The following Error Events can be reported in the Performance Report Message:

CRC Errors - event occurs when the received CRC code does not match that CRC code calculated locally.

Severe Errors - event occurs when two or more framing bit errors are detected in any 3 mSec window. Alternatively, existing 2 of 4, 2 of 5, or 3 of 5 errored framing bit criteria can be used to declare a Severe Error (SE). When a Severe Error is reported, the FE (Frame Bit Errors) count is set to 0.

Frame Bit Errors - event occurs whenever an incorrect or unexpected framing bit is received. When a FE error count is transmitted, the Severe Error (SE) count is set to 0.

Line Code Violations - event occurs whenever an invalid line violation (bipolar violation) occurs.

Controlled Slip Events - event occurs when frames are repeated or deleted at the receiving terminal to compensate for clocking differences between the Carrier and the Terminal equipment.

D4 and ESF Alarm Conditions

The following D4 / ESF Alarm Conditions can be reported:

AIS CFA (Alarm Indication Signal - Carrier Failure Alarm) - also known as a "Keep Alive" or "Blue Alarm" signal; consists of an <u>unframed</u> all-ones signal sent to maintain transmission continuity. The AIS CFA signal is declared when both the AIS state and <u>Red</u> CFA persist simultaneously.

OOF (Out-Of-Frame) Condition - occurs whenever Network or DTE equipment senses errors in the incoming framing pattern. Depending on the equipment, this can occur when 2 of 4, 2 of 5, or 3 of 5 framing bits are in error. A reframe clears the OOF condition.

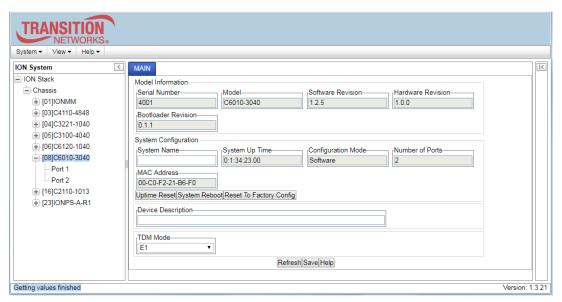
Red CFA (Carrier Failure Alarm) - occurs after detection of a <u>Continuous</u> OOF condition for 2.5 seconds. This alarm state is cleared when no OOF conditions occur for <u>at least 1</u> second. Some applications (AT&T DACS services) may not clear the CFA state for up to 15 seconds of no Out-Of-Frame occurrences.

Yellow CFA (Carrier Failure Alarm) - when a Terminal/Network equipment enters a <u>Red</u> CFA state, it transmits a "Yellow Alarm" in the opposite direction. A Yellow Alarm is transmitted by setting Bit #2 of each timeslot to a 0 (zero), <u>Space</u> state for D4 Framed facilities. For ESF facilities, a Yellow Alarm is transmitted by sending a repetitive 16-bit pattern consisting of 8 <u>Marks</u> (1) followed by 8 <u>Spaces</u> (0) in the Datalink bits. This is transmitted for a <u>minimum</u> of 1 second.

For D4 facilities, the <u>minimum</u> Yellow Alarm detection time is 335 mSec. Trunk conditioning should occur within 335 to 1000 mSec.

For ESF facilities, the <u>minimum</u> detection time is 28 mSec. (Note that 335 mSec equates to 2680 D4-type frames.)

LOS (Loss Of Signal) - a condition that is declared when no pulses have been detected in a 175 + /-75 pulse window (100 to 250 bit times).


Recovery Procedures

- 1. Ensure that the T1 or E1 is running properly on both ends.
- 2. Use the **show tdm config**, **show tdm loopback**, and **show tdm port** commands to verify that the configuration of the line matches that of the remote end.
- 3. Ensure that the cable between the interface port and the T1 or E1 service provider equipment or remote E3 terminal equipment connects correctly.
- 4. Ensure that the cable is connected to the correct port. Correct the cable connections as required.
- 5. Check all cables integrity. Look for breaks or other physical abnormalities in the cable. Replace the cable if necessary.
- 6. Check x6010 DIP Switches and Jumper Settings (page 211).
- 7. Run ION System Tests (page 203).
- 8. Run the In-band Loopback Code Detect Procedure (page 210).
- 9. Check with your provider to make sure the framing format configured on the port matches the framing format on the line. Try another framing format and see if the alarm clears.
- 10. Work with your provider to configure a remote loopback on the affected interface.

Recording Model Information and System Information

After performing the troubleshooting procedures, and before calling or emailing Technical Support, please record as much information as possible in order to help the Transition Networks Technical Support Specialist.

1. Select the ION system device **MAIN** tab. (From the CLI, use the commands needed to gather the information requested below. This could include commands such as **show card info**, **show tdm port config**, or others as request by the Support Specialist.

2. Record the x6010 Model Information.

	Serial Number:	Model:		
	Software Revision:	Hardware Revision:		
	Bootloader Revision:			
3.	Record the x6010 System Configuration inform	nation.		
	System Up Time:	Configuration Mode:		
	Number of Ports:	Device Description:		
	TDM Mode:			
4.	Provide additional Model and System information to your Technical Support Specialist. See "Basic ION System Troubleshooting" on page 281.			
	Your Transition Networks service contract number:			
	Describe the failure:			

Describe any action(s) already taken to resolve the problem (e.g., changing switch mode, rebooting etc.):
The serial # and revision # of each involved Transition Networks product in the network:
Describe your network environment (layout, cable type, etc.):
Network load and frame size at the time of trouble (if known):
The device history (i.e., have you returned the device before, is this a recurring problem, etc.):
Any previous Return Material Authorization (RMA) numbers:

Technical Support

Contact Us

Technical Support: Technical support is available 24-hours a day

US and Canada: 1-800-260-1312 International: 00-1-952-941-7600

Main Office

tel: +1.952.941.7600 | toll free: 1.800.526.9267 | fax: 952.941.2322

sales@transition.com | techsupport@transition.com | customerservice@transition.com

Address

Transition Networks 10900 Red Circle Drive Minnetonka, MN 55343, U.S.A.

Web: https://www.transition.com

Appendix A: Warranty and Compliance Information

Warranty

This warranty is your only remedy. No other warranties, such as fitness for a particular purpose, are expressed or implied. Transition Networks is not liable for any special, indirect, incidental or consequential damages or losses, including loss of data, arising from any cause or theory. Authorized resellers are not authorized to extend any different warranty on transition networks' behalf.

Limited Lifetime Warranty

Effective for Products Shipped May 1, 1999 and After. Every Transition Networks labeled product purchased after May 1, 1999, and not covered by a fixed-duration warranty will be free from defects in material and workmanship for its lifetime. This warranty covers the original user only and is not transferable.

This warranty does not cover damage from accident, acts of God, neglect, contamination, misuse or abnormal conditions of operation or handling, including over-voltage failures caused by use outside of the product's specified rating, or normal wear and tear of mechanical components.

Transition Networks will, at its option:

Attn: RETURNS DEPT: CRA/RMA #

- Repair the defective product to functional specification at no charge
- Replace the product with an equivalent functional product
- •Refund a portion of purchase price based on a depreciated value

To return a defective product for warranty coverage, contact Transition Networks' Customer Support for a return authorization number.

Send the defective product postage and insurance prepaid to the following address:
Transition Networks, Inc.
10900 Red Circle Drive
Minnetonka, MN 55343
USA

Failure to properly protect the product during shipping may void this warranty. The return authorization number must be written on the outside of the carton to ensure its acceptance. We cannot accept delivery of any equipment that is sent to us without a CRA or RMA number.

CRA's are valid for 60 days from the date of issuance. An invoice will be generated for payment on any unit(s) not returned within 60 days.

Upon completion of a demo/ evaluation test period, units must be returned or purchased within 30 days. An invoice will be generated for payment on any unit(s) not returned within 30 days after the demo/ evaluation period has expired.

The customer must pay for the non-compliant product(s) return transportation costs to Transition Networks for evaluation of said product(s) for repair or replacement. Transition Networks will pay for the shipping of the repaired or replaced in-warranty product(s) back to the customer (any and all customs charges, tariffs, or/and taxes are the customer's responsibility).

Before making any non-warranty repair, Transition Networks requires a \$200.00 charge plus actual shipping costs to and from the customer. If the repair is greater than \$200.00, an estimate is issued to the customer for authorization of repair. If no authorization is obtained, or the product is deemed not

repairable, Transition Networks will retain the \$200.00 service charge and return the product to the customer not repaired. Non-warranted products that are repaired by Transition Networks for a fee will carry a 180-day limited warranty. All warranty claims are subject to the restrictions and conventions set forth by this document.

Transition Networks reserves the right to charge a \$50 fee for all testing and shipping incurred, if after testing, a return is classified as "No Problem Found."

THIS WARRANTY IS YOUR ONLY REMEDY. NO OTHER WARRANTIES, SUCH AS FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSED OR IMPLIED. TRANSITION NETWORKS IS NOT LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, ARISING FROM ANY CAUSE OR THEORY. AUTHORIZED RESELLERS ARE NOT AUTHORIZED TO EXTEND ANY DIFFERENT WARRANTY ON TRANSITION NETWORKS'S BEHALF.

Compliance Information

Standards CISPR22/EN55022 Class A, CE Mark

FCC Regulations NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

CE Marking: This is a Class A product. In a domestic environment, this product could cause radio interference; as a result, the customer may be required to take adequate preventative measures.

UL Recognized Tested and recognized by the Underwriters Laboratories, Inc.

Canadian Regulations This Class A digital apparatus complies with Canadian ICES-003. Cet appareil numériqué de la classe [*] est conformé à la norme NMB-003 du Canada.

European Regulations

WARNING: This is a Class A product. In a domestic environment, this product could cause radio interference in which case the user may be required to take adequate measures.

Achtung! Dieses ist ein Gerät der Funkstörgrenzwertklasse A. In Wohnbereichen können bei Betrieb dieses Gerätes Rundfunkstörungen auftreten. In diesem Fäll ist der Benutzer für Gegenmaßnahmen verantwortlich.

Attention! Ceci est un produit de Classe A. Dans un environment domestique, ce produit risque de créer des interférences radioélectriques, il appartiendra alors à l'utilsateur de prende les measures spécifiques appropriées.

In accordance with European Union Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003, Transition Networks will accept post usage returns of this product for proper

disposal. The contact information for this activity can be found in the 'Contact Us' portion of this document.

CAUTION: RJ connectors are NOT INTENDED FOR CONNECTION TO THE PUBLIC TELEPHONE NETWORK. Failure to observe this caution could result in damage to the public telephone network.

Der Anschluss dieses Gerätes an ein öffentlickes Telekommunikationsnetz in den EG-Mitgliedstaaten verstösst gegen die jeweligen einzelstaatlichen Gesetze zur Anwendung der Richtlinie 91/263/EWG zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Telekommunikationsendeinrichtungen einschliesslich der gegenseitigen Anerkennung ihrer Konformität.

Declaration of Conformity

Declaration of Conformity

Transition Networks, Inc.

10900 Red Circle Drive, Minnetonka, Minnesota 55343 U.S.A.

Declares that the products:
C6010-30xx, S6010-30xx, C6010-10xx, S6010-10xx

Conforms to the following Product Regulations:

FCC Part 15 Class A, EN 55032:2012, EN 55024:2010

Directive 2014/30/EU

Low-Voltage Directive 2014/35/EU

IEC /EN 60950-1:2006+A2:2013 2011/65/EU EN 50581:2012

With the technical construction on file at the above address, this product carries the

CE Mark

 $\textbf{I, the undersigned, hereby declare that the equipment specified above conforms to the above \textit{Directive}(s) and \textit{Standards}(s).}$

Minnetonka, Minnesota

Feb27 2017

Stephen Anderson

Signature

Vice President of Engineering

28141B

Electrical Safety Warnings

Electrical Safety

IMPORTANT: This equipment must be installed in accordance with safety precautions.

Elektrische Sicherheit

WICHTIG: Für die Installation dieses Gerätes ist die Einhaltung von Sicherheitsvorkehrungen erforderlich.

Elektrisk sikkerhed

VIGTIGT: Dette udstyr skal installeres i overensstemmelse med sikkerhedsadvarslerne.

Elektrische veiligheid

BELANGRIJK: Dit apparaat moet in overeenstemming met de veiligheidsvoorschriften worden geïnstalleerd.

Sécurité électrique

IMPORTANT: Cet équipement doit être utilisé conformément aux instructions de sécurité.

Sähköturvallisuus

TÄRKEÄÄ: Tämä laite on asennettava turvaohjeiden mukaisesti.

Sicurezza elettrica

IMPORTANTE: questa apparecchiatura deve essere installata rispettando le norme di sicurezza.

Elektrisk sikkerhet

VIKTIG: Dette utstyret skal installeres i samsvar med sikkerhetsregler.

Segurança eléctrica

IMPORTANTE: Este equipamento tem que ser instalado segundo as medidas de precaução de segurança.

Seguridad eléctrica

IMPORTANTE: La instalación de este equipo deberá llevarse a cabo cumpliendo con las precauciones de seguridad.

Elsäkerhet

OBS! Alla nödvändiga försiktighetsåtgärder måste vidtas när denna utrustning används.

Appendix B: Factory Defaults

The x6010 NID *Device* Level Factory Defaults are shown in the tables below. **Note**: The default settings shown are as seen in the tabs/fields of the x6010 Web interface.

Device-Level Factory Defaults

Table 14: Device-Level Factory Defaults

Hardware Mode			
System Level			
Login / Password	ION / private		
System Name	Device dependent (e.g., C6010-3040)		
Device Description	<null string=""></null>		
TDM mode	Depends on DIP switch position	DIP switch 4-4, UP: T1, Down:E1	
In-band Loopback Selection	Depends on DIP switch position	DIP switch 3-4, UP: Disabled, Down: Enabled. Start Pattern: "11000" Stop Pattern: "11100"	

Port-Level Factory Defaults

Table 15: Port-Level Factory Defaults

Port 1			
Circuit ID	<null string=""></null>		
AIS Transmit	Depends on DIP switch position	DIP switch 4-1, UP: Disable, Down: Enable	
Transmit All Ones	Enabled		
Long Haul	Depends on DIP switch position Valid on T1 only	DIP switch 4-3, UP: No, Down: Yes	
Line Build Out	Depends on TDM mode & DIP switch position	See Table 17 below.	
Loopback Type	Depends on front panel DIP switch.	Switch 2, CL: PHY Layer, Middle: No Loopback	
Loopback Status	Depends on front panel DIP switch.	Switch 2, CL: Local in Loopback, Middle: No Loopback	
Port 2			
Circuit ID	<null string=""></null>		
AIS Transmit	Depends on DIP switch position	DIP switch 4-2, UP: Disable, Down: Enable	
Transmit All Ones	Enabled		
Loopback Type	Depends on front panel DIP switch.	Switch 2, FL: PHY Layer, Middle: No Loopback	
Loopback Status	Depends on front panel DIP switch.	Switch 2, FL: Local in Loopback, Middle: No Loopback	

Software Mode			
System Level			
Device Description	<null string=""></null>		
TDM mode	Depends on DIP switch position	DIP switch 4-4, UP: T1, Down:E1	
In-band Loopback Selection	Depends on DIP switch position	DIP switch 3-4, UP: Disabled, Down: Enabled. Start Pattern: "11000" Stop Pattern: "11100"	
Port 1			
Circuit ID	<null string=""></null>		
AIS Transmit	Enabled		
Transmit All Ones	Enabled		
Long Haul	Depends on DIP switch position Valid on T1 only	DIP switch 4-3, UP: No, Down: Yes	
Line Build Out	Depends on TDM mode & DIP switch position	See Table 17 below.	
Loopback Type	No Loopback		
Loopback Status	No Loopback		
Port 2			
Circuit ID	<null string=""></null>		
AIS Transmit	Enabled		
Transmit All Ones	Enabled		
Loopback Type	No Loopback		
Loopback Status	No Loopback		

Supported Line Build Out Matrix

Table 16: Line Build Out (LBO) Details

Switch 4-4 (TDM mode)	Switch 4-3 (Long Haul)	Switch 3-1	Switch 3-2	Switch 3-3	Line Build Out
UP	UP	UP	UP	Down	t1SH-DSX-533-655
UP	UP	Up	Down	UP	t1SH-DSX-399-533
UP	UP	Up	Down	Down	t1SH-DSX-266-399
UP	UP	Down	UP	Up	t1SH-DSX-133-266
UP	UP	Down	UP	Down	t1SH-DSX-0- 133ANSIT1403
UP	Down	UP	UP	Χ	t1LH-m22-5dB
UP	Down	UP	Down	Χ	t1LH-m15dB
UP	Down	Down	UP	Χ	t1LH-m7-5dB
UP	Down	Down	Down	Χ	t1LH-0dB
Down	Х	Х	Х	Х	x6010 with BNC: e12-37V75ohm x6010 with RJ-48: e13-0V120ohm

X = does not care

Appendix C: Configuration Quick Reference - CLI

T1 Ports Configuration

- 1. Access the x60xx through either a USB connection or a Telnet session.
- Configure the Port 1 Circuit ID. Type set circuit-ID=xx.
- 3. Configure the Port 1 Loopback Type.

 Type set tdm loopback type=phylayer.
- 4. Use the **go** command to switch to Port 2.
- 5. Repeat steps 2-3 above to configure the Port 2 Circuit ID, AIS Transmit, and Loopback Type.
- 6. Configure the Port 2 DMI function (optional if supported).
- 7. Click the **Save** button when done.
- 8. Verify each port's configuration. Type **show tdm port config**.

Port Loopback Test -T1 and E1 Modes

- 1. Place the x6010 in Hardware mode and set the x6010 front panel CL FL switch to the CL position.
- 2. Access the x6010 through either a USB connection or a Telnet session.
- 3. Use the **go** command to switch to Port 1. Type **go c1 sx l1p=1** and press **Enter**.
- Set the Port 1TDM Loopback type to PHY layer.
 Type set tdm loopback type=phylayer and press Enter.
- Start the Port 1 Loopback operation.
 Type set tdm loopback oper=init and press Enter.
- Stop the Port 1 Loopback operation.Type set tdm loopback oper=stop and press Enter.
- 7. Set the x6010 front panel **CL FL** switch to the **FL** position.
- 8. Use the **go** command to switch to Port 2.
- 9. Repeat steps 4-6 for Port 2.

E1 Mode Configuration

- 1. Set DIP Switch SW4 switch #4 to the Down position.
- 2. Access the x6010 through either a USB connection or a Telnet session.
- 3. Use the **go** command to switch to Port 1. Type **go c=1 s=x l1p=1**.
- 4. If required, enter a Circuit ID of up to 64 characters using the **set circuit-ID** command.
- Configure Loopback management as required.
 Type set tdm loopback oper=xx and set tdm loopback oper type=xx.
- 6. Configure TAOS Transmit.

 Type set taos transmit=enable.
- 7. Verify the E1 mode configuration. Type **show tdm config**.

For SNMP MIB Trap Information

For information on Network Management for Microsoft Networks Using SNMP, see the MSDN Library or http://technet.microsoft.com/en-us/library/cc723469.aspx.

The notification MIB is described in section 4.2 and section 7.2 of RFC 2573, available from the IETF web site at http://www.ietf.org/rfc/rfc2573.txt.

Appendix D: Cable Specifications

This appendix provides fiber and twisted-pair copper cable specifications.

Fiber Specifications

Fiber Cable

Bit Error Rate: <10-9

Single mode fiber *(recommended)*: 9 μm Multimode fiber *(recommended)*: 62.5/125 μm

Multimode fiber (optional): 100/140, 85/140, 50/125 μm

T1/E1 Cable

Category 3: (minimum requirement)

Connector: RJ-48C

Electrical network connection: Single 4-wire (Tip/Ring - Tip1/Ring1) Mechanical arrangement: 8-position miniature modular jack

Usage: 1.544 Mb/s access lines

Interface codes: 04DU9 (any applicable)

Cable type:

Ш	Long	Haul	T1/	E1:	0db,	-7.5dp	o, -15db	, -22db
---	------	------	-----	-----	------	--------	----------	---------

☐ E1: E1 3.0V, 120 ohm

☐ J1: 0-655′, 110 ohm (future support)

DSX-1: 0-133', 133-266', 266-399', 399-533', 533-655', 100 ohm

Twisted-Pair Copper Cable

Twisted pair connection requires two active pairs. The two active pairs in a T1/E1 network are pins 1 & 2 and pins 4 & 5. Use only dedicated wire pairs (such as blue/white & white/blue, orange/white & white/orange) for the active pins. Category 3 or better twisted-pair copper wire is required. Either shielded twisted-pair (STP) or unshielded twisted-pair (UTP) can be used.

T1 TP/UTP

Gauge 24 to 22 AWG Attenuation 2.6 dB/100 meters @ 1.0 MHz Differential Characteristic Impedance 100 Ω ±10%

E1 TP/UTP

Gauge 24 to 22 AWG Attenuation 2.6 dB/100 meters @ 1.0 MHz Differential Characteristic Impedance 120 Ω ±10%

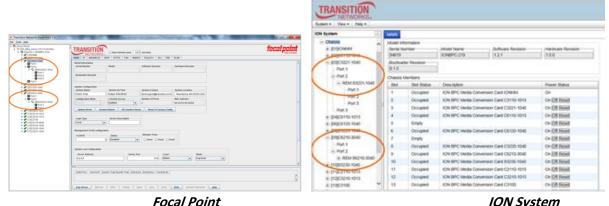
The physical characteristics must meet or exceed ITU specifications.

Appendix E: Local Management of Cards in a Remote Un-managed Chassis

This appendix discusses managing the link between an ION Managed Chassis (MC) and an Un-managed Chassis (UC), and performing remote firmware upgrades.

ION x6210 FW v1.2.6 adds support for management of a C6210 when installed in an unmanaged ION chassis. Management is supported by another C6210 installed in a managed chassis when the two are linked together via a fiber cable. FW v1.2.6 also adds support for remote firmware upgrades of a C6210 in an unmanaged chassis.

Previous Status


In previous firmware versions (e.g., x6010 / x6020 before v 1.2.6):

- All cards in an ION chassis can be managed via the IONMM.
- Some cards support remote management of a linked stand-alone, in-band, over the fiber, by the card in a local Managed Chassis (MC):

Ethernet: x2220, x3220, x3230, x4120 TDM: x6010, x6110, x6120, x6210

- Some cards do not support remote management of a linked stand-alone:
 - x2110, x2210, x3100, x3110, x3210, x4110

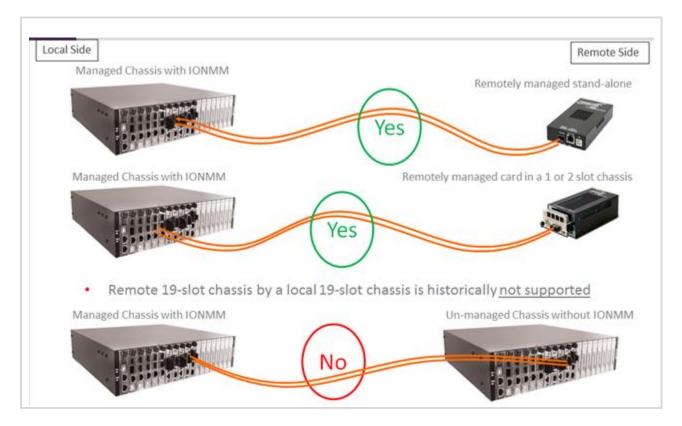
Local Management of a Remote Unit:

ION System

In firmware versions before v 1.2.6, support includes:

- A local Managed Chassis with an IONMM can manage a remotely managed standalone
- A local Managed Chassis with an IONMM can manage a remotely managed card in a 1- or 2-Slot ION Chassis

Not supported in firmware versions before v 1.2.6:


Remote 19-slot Managed Chassis cannot manage a remote Un-managed Chassis that has no **IONMM**

In x6010 / x6020 firmware versions v 1.2.6 and after, Managed Chassis (MC) to Un-managed Chassis (UC) is supported with a firmware upgrade to the slide-in-card (\$6010/\$6020 v 1.2.6).

Note that no firmware upgrade to the IONMM is required.

Previous Management of a Managed Chassis

Previously supported and un-supported configurations are shown below.

New Chassis-to-Chassis Operation

Managed Chassis (MC) to Un-managed Chassis (UC) is now supported with a firmware upgrade to the slide-in-cards. No firmware upgrade to IONMM is required.

1. When a chassis is first powered up, the IONMM boots and sends LLDP discovery packets out to the chassis backplane to let the cards know that this is a managed chassis

a) If IONMM exists: cards enter normal local management mode

b) If no IONMM exists: cards enter remote management mode

- 2. When a managed chassis (MC) is first powered up:
 - a) In approximately 40 seconds, the IONMM boots and the x6110 / x6120 / C4120 cards display in the Management interface.
 - b) In 50 seconds to 1:25 minutes, the IONMM boots and the OAM Ethernet cards display in the Management interface.
- 3. During power up of an Un-managed Chassis (UC), the discovery (or non-discovery) of a Management Module takes time:
 - a) Time for the TDM cards in the UC to be displayed in the MC: 1:05 minutes.
 - b) Time for the remote cards in the UC to show up in the management interface of the MC: 3:40 minutes.

Remote Firmware Upgrade

Remote firmware upgrade of cards in an UC is also supported. **Note** that:

- OAM Ethernet cards are easily upgraded in the field.
- TDM cards and x602x require a boot loader upgrade first:
 - Can only be done in the factory
 - Only needs to be done once, but is required to support future firmware upgrades in the field:

C6010: Bootloader 0.1.2
 C6110/C6120: Bootloader 0.1.3
 C6210: Bootloader 0.1.2
 C4120: Bootloader 0.1.3

- Field firmware upgrades can be done in a MC, and then the cards can be moved to the UC.
- Field firmware upgrades in the UC cannot be done until the boot loader is upgraded at the factory.

C6010 Series (T1/E1 Copper to Fiber Media Converter):

- Firmware needed: x6010_1.2.6_AP.bin
- Bootloader upgrade is required (x6010_0.1.2_BL.bin)
- Time required for a card to be displayed in the Management interface:
 - Managed Chassis (MC)
 - Inserting a card in a MC takes 0:10 0:20 seconds
 - On chassis power up, cards appear in 0:40 0:59 seconds
 - Un-managed Chassis (UC)
 - Inserting a card in an UC takes 1:10 minutes
 - Upgrading a card in an UC takes 0:45 seconds

Issues

- 1. The bootloader upgrade requirement only affects cards in the field.
 - a) New production units will already have the bootloader upgrade done in the factory.
- 2. On initial power up of chassis:
 - a) The remote cards will take a few minutes longer to show up in the management display.
 - b) Accessing management at a later date, on a chassis that is already powered up is much quicker; delays only occur on initial power up.
- 3. Adding at card to an already powered up chassis is 40 seconds quicker that times listed, because the IONMM is already booted up.
- 4. If a chassis is up and running as a remotely located, un-managed chassis, and you decide at a later date to add an IONMM, the chassis will have to be power cycled in order for the cards to report their status to the new local management module.

Default configurations

Default configurations for ION cards are as follows:

Chassis cards (e.g., C2220, C3220, C3221 ...) defaults:

- Remote mode so the IONMM can see them.
- The IP stack is disabled so they don't have an IP address.
- USB is enabled.

Standalone cards S2220, S3220, S3230 defaults:

- Local mode.
- The IP stack is enabled.
- The local IP address is 192.168.0.10.
- USB is enabled.

Standalone cards S3221 and S3221 defaults:

- Remote mode so they can be seen by the IONMM hanging off a port of the local card.
- The IP stack is disabled so they don't have an IP address.
- USB is enabled.

<u>Note</u>: For the Local Management of Cards in a Remote Un-managed Chassis feature to work the card in the remote chassis must be set to "Remote" mode so the IONMM in the local chassis can see it hanging off the port of the local card.

Changing Switch Mode (Local / Remote)

The NID default is changed to Local mode (instead of Remote mode) at ION v 1.3.10. When an ION NID is powered up, it will no longer come up in Remote mode. Instead it will come up in Local mode with DHCP enabled. If a DHCP server is not accessible, it will timeout and revert to the default static IP address 192.168.0.10.

Management and configuration control can be switched between local management control (via CLI, Telnet or Web) or remote management control (via the IONMM). By default, the NID is managed by the IONMM.

The switch mode can only be changed for the NID using the CLI method.

The CLI command **set switch mode={local | remote}** changes the operating mode of a standalone device.

Remote Mode (default mode): the device can only be managed and configured via the IONMM. Setting the switch mode to remote indicates that the device is managed through the IONMM. The device cannot perform any IP management when in 'remote' mode.

Local Mode: the device can only be configured and managed directly via CLI, Telnet or Web. Setting the mode to **local** indicates that the device is managed through either a direct USB connection or a direct network connection via Telnet or the Web interface (i.e., the device is no longer managed by the IONMM).

Note: The x323x NIDs are shipped with switch mode set to "remote."

To change the device switch mode to local, do the following:

- 1. Start a USB session.
- 2. At the command prompt type **set switch mode=local**.
- 3. Press the **Enter** key.
- 4. Reboot the card for the changes to take effect. At the command prompt type reboot.

Doing a reboot, restart or upgrade of the IONMM, a power restart of the chassis, or a reset to factory remove temporary files (e.g. configuration backup files, Syslog file).

- 5. Press the **Enter** key to reboot the module.
- 6. At the command prompt type **show switch mode**.
- 7. Press the **Enter** key. This displays the device's management mode local or remote indicating where the device is managed:
 - local device is managed through direct connection to the device.
 - remote device is managed through the IONMM.

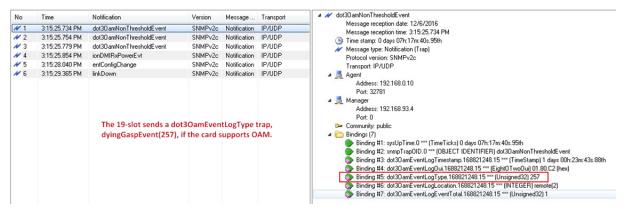
Note: The system cannot show the switch mode on all card types.

Troubleshooting

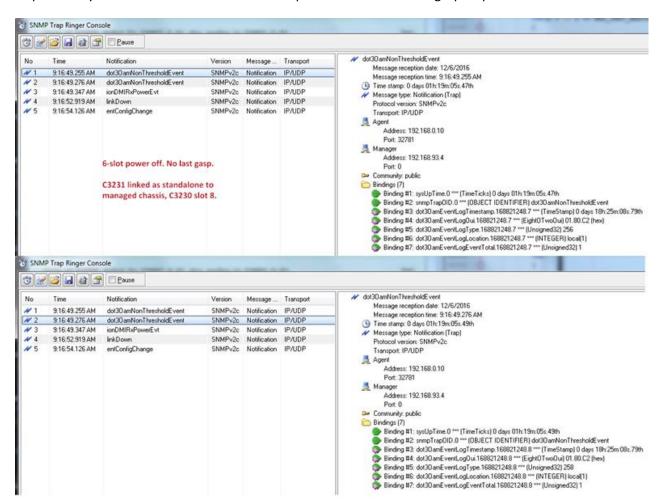
Message: Error: System is busy, please retry this command later!

Symptom: long delay in CLI response for a C601x in a 1 or 2 slot ION chassis.

Meaning: C601x software v1.3.13 adds a new feature that allows a chassis card to be seen in an unmanaged chassis. The card looks for an IONMM in the chassis before completing its initialization, and in a 1 or 2 slot chassis it delays the longest before deciding there isn't an IONMM present. When setting the card to **Local** mode you must wait for a timeout period of up to 5 minutes. After the 5 minutes the card comes back and you can set the IP address to static and you will no longer get the error message of the card being "busy".


Example:

```
C0|S0|L1D>set switch mode local
Please reboot the card for the changes to take effect!
C0|S0|L1D>reboot
Warning: this command will restart system, connection will be lost and
please login again!
login: ION
Password:
Hello, this is ION command line (version 1.00).
Copyright 2009 Transition Networks.
C0|S0|L1D>set curr-time="20180118 9:44:50"
Error: System is busy, please retry this command later!
C0|S0|L1D>show ip-mgmt cond fig
Error: System is busy, please retry this command later!
C0|S0|L1D>show system info
Error: System is busy, please retry this command later!
***************
It takes 5 minutes to display the following response:
****************
C0|S0|L1D>
```

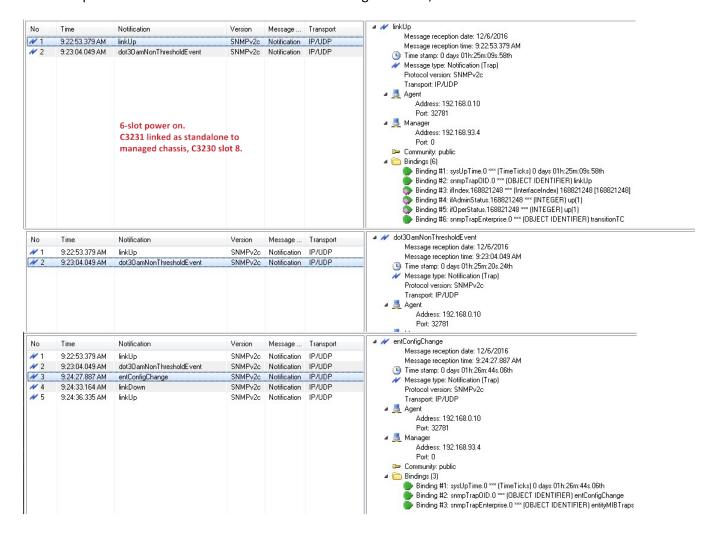

Recovery: Wait 5 minutes for the card to come back and the command prompt to display again.

Traps

<u>The 19-Slot as a Remote Chassis</u>: The ION219-x sends a *dot3OamEventLogType* trap; it also sends a *dyingGaspEvent(257)* if the card supports OAM.



<u>Unmanaged 6-slot with remote C3231</u> connected to a managed 19-slot, C3230 slot 8. Below are the traps seen by MG-Soft when the ION106-x lost power. There is no last gasp trap.



ION106-x power off. No last gasp. C3231 linked as standalone to managed chassis; C3230 in slot 8.

ION106-x power off. No last gasp. C3231 linked as standalone to managed chassis; C3230 in slot 8.

ION106-x power on. C3231 linked as standalone to managed chassis; C3230 in slot 8.

Glossary

This section describes many of the terms and mnemonics used in this manual. Note that the use of or description of a term does not in any way imply support of that feature or of any related function(s).

100BASE-FX

100BASE-FX is a version of Fast Ethernet over optical fiber. It uses a 1300 nm near-infrared (NIR) light wavelength transmitted via two strands of optical fiber, one for receive (RX) and the other for transmit (TX). Maximum length is 400 meters (1,310 ft) for half-duplex connections (to ensure collisions are detected), 2 kilometers (6,600 ft) for full-duplex over multimode optical fiber, or 10,000 meters (32,808 feet) for full-duplex single mode optical fiber. 100BASE-FX uses the same 4B5B encoding and NRZI line code that 100BASE-TX does. 100BASE-FX should use SC, ST, or MIC connectors with SC being the preferred option. 100BASE-FX is not compatible with 10BASE-FL, the 10 MBit/s version over optical fiber.

1000BASE-X

Refers to gigabit Ethernet transmission over fiber, where options include 1000BASE-CX, 1000BASE-LX, and 1000BASE-SX, 1000BASE-LX10, 1000BASE-BX10 or the non-standard -ZX implementations.

1000BASE-T

Also called Gigabit (Gb) Ethernet. The 1000BASE designation is an IEEE shorthand identifier. The "1000" in the media type designation refers to the transmission speed of 1000 Mbps. The "BASE" refers to baseband signaling, meaning that only Ethernet signals are carried on the medium. 1000BASE-T is Gigabit Ethernet (1 Gb is 1000 megabits per second) on copper cables, using four pairs of Category 5 UTP wiring to achieve the gigabit data rate. 1000BASE-T is mainly used in data centers for server switching. One advantage of 1000BASE-T is that existing copper cabling can be used instead of having to rewire with optical fiber. Gigabit Ethernet industry offerings include 1000BASE-SX, 1000BASE-LX/LH, 1000BASE-ZX, 1000BASE-CX, and 1000BASE-T.

AIS

(Alarm Indication Signal) also called "all ones" due to the data / framing pattern, AIS is a signal transmitted by an intermediate element of a multi-node transport circuit that is part of a concatenated telecommunications system to alert the receiving end of the circuit that a segment of the end-to-end link has failed at a logical or physical level, even if the system it is directly connected to is still working. The AIS replaces the failed data, allowing the higher order system in the concatenation to maintain its transmission framing integrity. Downstream intermediate elements of the transport circuit propagate the AIS onwards to the destination element.

There are various AIS formats based on the signaling level of the errored circuit. When an element of T-1 or (DS-1) circuit loses signal (LOS) or loses framing (OOF), the device replaces the erroneous data bits with a series of ones. This is where the term All Ones originates (as in "TAOS".) With Ethernet long-distance data links, a similar Ethernet alarm indication signal (EthAIS) is used.

Alarms

Alarms are normally produced by the receiving terminal equipment when the framing is compromised. There are three defined alarm indication signal states, identified by a legacy color scheme: red, yellow and blue.

Red alarm indicates the alarming equipment is unable to recover the framing reliably. Corruption or loss of the signal will produce "red alarm." Connectivity has been lost toward the alarming equipment. There is no knowledge of connectivity toward the far end.

Yellow alarm indicates reception from the far end of a data or framing pattern that reports the far end is in "red alarm." Red alarm and yellow alarm states cannot exist simultaneously on a single piece of equipment because the "yellow alarm" pattern must be received within a framed signal. For ESF framed signals, all bits of the Data Link channel within the framing are set to data "0"; the customer data is undisturbed. For D4 framed signals, the pattern sent to indicate to the far end that inbound framing has been lost is a coercion of the framed data so that bit 2 of each timeslot is set to data "0" for three consecutive frames. Although this works well for voice circuits, the data pattern can occur frequently when carrying digital data and will produce transient "yellow alarm" states, making ESF a better alternative for data circuits.

Blue alarm indicates a disruption in the communication path between the terminal equipment. Communication devices, such as repeaters and multiplexers must see and produce line activity at the DS1 rate. If no signal is received that fills those requirements, the communications device produces a series of pulses on its output side to maintain the required activity. Those pulses represent data "1" in all data and all framing time slots. This signal maintains communication integrity while providing no framing to the terminal equipment. The receiving equipment displays a "red alarm" and sends the signal for "yellow alarm" to the far end because it has no framing, but at maintenance interfaces the equipment will report "AIS" or Alarm Indication Signal. AIS is also called "all ones" because of the data and framing pattern.

These alarm states are also lumped under the term Carrier Group Alarm (CGA). The meaning of CGA is that connectivity on the digital carrier has failed. The result of the CGA condition varies depending on the equipment function. Voice equipment typically coerces the robbed bits for signaling to a state that will result in the far end properly handling the condition, while applying an often different state to the customer equipment connected to the alarmed equipment. Simultaneously, the customer data is often coerced to a 0x7F pattern, signifying a zero-voltage condition on voice equipment. Data equipment usually passes whatever data may be present, if any, leaving it to the customer equipment to deal with the condition.

T1 and E1 Alarms:

Yellow: remote alarm indication (RAI): The RAI (remote alarm indication) signal indicates loss of layer 1 capability at the user-network interface. RAI propagates towards the network if layer 1 capability is lost in the direction of the user, and RAI propagates toward the user if layer 1 capability is lost in the direction of the network.

Blue: alarm indication signal (AIS): The AIS (alarm indication signal) is used to indicate loss of layer 1 capability in the ET-to-TE direction on the network side of the user-network interface. A characteristic of AIS is that its presence indicates that the timing provided to the TE may not be the network clock. AIS is non-framed and coded as all binary Ones.

Red: Loss of signal (LOS): The equipment shall assume "loss of signal" when the incoming signal amplitude is, for a time duration of at least 1 ms, more than 20 dB below the nominal amplitude. The equipment shall react within 12 ms by issuing AIS.

Note: E1s do not use the terms Yellow, Blue, and Red; they are provided here for comparisons with T1.

CSU/DSU Alarms:

AIS: Alarm indication signal that is all ones, unframed -- 11111111. Also known as a Blue Alarm which signals that an upstream failure has occurred

CRC (Cyclic Redundancy Check): A method of detecting errors in the serial transmission of data. A CRC for a block of data is calculated before it is sent, and is then sent along with the data. A new CRC is calculated on the received data. If the new CRC does not match the one that has been sent along with the data then an error has occurred.

Yellow Alarm a yellow alarm indicates a transmission problem at the remote CSU/DSU. A specific bit pattern will identify the alarm, the mechanism differs depending on the frame format. Of course for the remote CSU/DSU to signal an alarm, the basic T1 circuit has to be operational.

Loss of Synchronization if the CSU/DSU can't locate the synchronization flag over some number of frames, it will indicate that it lost "synch" with the remote CSU/DSU.

Red Alarm A red alarm indication warns that the CSU/DSU has lost synchronization over a longer period of time.

Bipolar Violations This indicates that unintentional bipolar violations have been detected on the circuit. This typically is created when one side of the link sends binary data in which the negative and positive states alternate. Used in digital transmission facilities.

Loss of Service- when an insufficient number of '1' bits or pulses are received, the CSU/DSU may declare the circuit to be out of service.

ANSI

(American National Standards Institute) A private non-profit organization that oversees the development of voluntary consensus standards for products, services, processes, systems, and personnel in the United States. The organization also coordinates U.S. standards with international standards so that American products can be used worldwide.

Auto-Negotiation

With Auto-Negotiation in place, Ethernet can determine the common set of options supported between a pair of "link partners." Twisted-pair link partners can use Auto-Negotiation to figure out the highest speed that they each support as well as automatically setting full-duplex operation if both ends support that mode. (AKA, N-WAY Protocol. Standard: IEEE 802.3u.)

Auto MDI / MDIX

Auto MDI/MDIX automatically detects the MDI or MDIX setting on a connecting device in order to obtain a link. This means installers can use either a straight through or crossover cable and when connecting to any device.

BER

(Bit Error Rate) the percentage of bits that have errors relative to the total number of bits received in a telecom transmission, usually expressed as ten to a negative power. For example, a transmission might have a BER of 10 to the minus 6 (10^{-6}), meaning that, out of 1,000,000 bits transmitted, one bit was in error. The BER is an indication of how often a packet or other data unit has to be retransmitted because of an error. Too high a BER indicates that a slower data rate could improve overall transmission time for a given amount of transmitted data since the BER would be reduced, reducing the number of packets to resend. Typical error rates for copper and optical T1 transmissions are in the range 10^{-10} to 10^{-14} ; BER for wireless networks is typically in the range of 10^{-3} to 10^{-6} . Could also mean "Bit Error Ratio".

The BER (Bit Error Rate or Bit Error Ratio) is the number of bit errors that occur during transmission. The BER is given as a negative number, (e.g., 10^{-10} indicates a BER of one bit error in 10,000,000,000 bits of transmission).

Big Endian

Bit ordering within a byte where bits are sent serially starting with the MSB (most significant byte) and ending with the LSB (least significant byte). Contrast "Little Endian".

BPC

(Back Plane Controller) the ION chassis component that provides communication between the SIC cards and the IONMM. The BPC is an active device with a microprocessor and management software used to interconnect IONMM and SIC cards via the Ethernet management plane. The BPC has knowledge of the cards that are present in the system, and is responsible for managing the Ethernet switch that interconnects all the chassis slots.

BPDU

(Bridge Protocol Data Unit) Data messages that are exchanged across the switches within an extended LAN that uses a spanning tree protocol topology. BPDU packets contain information on ports, addresses, priorities and costs and ensure that the data ends up where it was intended to go.

BNC

(Bayonet-Neill-Concelman) A bayonet-locking connector used to terminate coaxial cables. A BNC connector has a bayonet-type shell with two small knobs on the female connector which lock into spiral slots in the male connector when twisted on. AKA Bayonet Network Connector, Bayonet Navy Connector, British Naval Connector, Bayonet Nut Connection.

Bridge

A device that connects one local area network (LAN) to another LAN.

CE

A mandatory conformity mark on many products placed on the single market in the European Economic Area (EEA). The CE marking certifies that a product has met EU consumer safety, health or environmental requirements.

CE can also stand for Carrier Ethernet, Circuit Emulation, Customer Edge, or Customer Equipment.

CEPT

Conférence Européenne des Postes et Télécommunications (normalisation) the European Conference on post and telecommunications. A European organization of 26 European Post and Telecommunication governing services that support European advisement by the CCITT. The Conference of European Postal and Telecommunication Administration. Similar to the ITU-T in the U.S.

CEPT-1

(European Digital Signal 1) the European standard for digital physical interface at 2.048 Mbps. The US equivalent acronym is E-1.

CEPT-3

(European Digital Signal 3) the European standard for digital physical interface at 34.368 Mbps. It can simultaneously support 16 E-1/CEPT-1 circuits. The US equivalent acronym is E-3.

CEPT-4

(European Digital Signal 4) the European standard for digital physical interface at 139.264 Mbps. The US equivalent acronym is E-4.

CIR

(Committed Information Rate) The average rate up to which service frames are delivered according to performance objectives (e.g., delay, loss, etc.) associated with the service; the CIR value is always less than or equal to the UNI speed. See also "EIR".

Circuit ID

A company-specific identifier assigned to a data or voice network between two locations. This circuit is then leased to a customer by that ID. If a subscriber has a problem with the circuit, the subscriber contacts the telecommunications provider to provide this circuit ID for action on the designated circuit. Several Circuit ID formats exist (Telephone Number Format, Serial Number Format, Carrier Facility Format and Message Trunk Format). Telecom Circuit ID formats (LEC circuit IDs) provide service codes for DSL, HDSL, ADSL, Digital data, SST Network Trunk, Switched Access, E1, Switched Access, Basic Data and Voice, LAN, SONET, Ethernet, Video, Voice, Digital Transmission, and others.

The C3210 supports the Circuit ID, a company-specific identifier assigned by the user to identify the converter and individual ports in any manner the user chooses. In the ION system, the Circuit ID port identifier is based on the agent-local identifier of the circuit (de-fined in RFC 3046), detected by the agent and associated with a particular port. The C3210 supports a circuit ID of up to 64 bytes at the device level and the port level. The Circuit ID provides the option to configure an ASCII text string up to 63 bytes and override the de-fault circuit ID, which is vlan-module-port in binary format. The C3210 supports the Circuit ID, a company-specific identifier assigned by the user to identify the converter and individual ports in any manner desired. In the ION system, the Circuit ID port identifier is based on the agent-local identifier of the circuit (defined in RFC 3046), as detected by the agent and associated with a particular port. Demarc Connection Points should be labeled with the Local Access Provider's Circuit ID, Carrier ID Number, and Vendor Cable ID Number. Edge Termination Points should be labeled with the Local Access Provider's Circuit ID, Carrier Circuit ID Number, and Vendor Cable ID Number. The C3210 Circuit ID feature can be configured using either the CLI or Web interface.

CLI

(Command-Line Interface) A mechanism for interacting with a computer operating system or software by typing commands to perform specific tasks. The CLI allows users to set up switch configurations by using simple command phrases through a console / telnet session.

Community

Two levels of ION system access privileges are password protected:

- Read access (Read ONLY) a Community Name with a particular set of privileges to monitor the network without the right to change any of its configuration.
- Read/Write (Read <u>and</u> make changes) a Community Name with an extended set of privileges to monitor the network as well as actively change any of its configuration.

Converter

A device that changes: 1) a signal from one transmission media to another (e.g., from copper to optical fiber) or 2) from one signaling type to another (e.g., analog to digital). See also "media converter".

CSA

(Canadian Standards Association) A not-for-profit membership-based association serving business, industry, government and consumers in Canada and the global marketplace.

CSU/DSU

(Channel Service Unit/Data Service Unit) a hardware device that converts a digital data frame from the communications technology used on a LAN into a frame appropriate to a WAN, and vice versa. For example, if you have a leased digital line (e.g., T1 or fractional T1 line) from a phone company you would use a CSU/DSU at your end, and the phone company would use a CSU/DSU at its end.

CSU and DSUs are sold as separate products or can be part of a T1 WAN card. A CSU/DSU's DTE interface is usually V.xx and/or RS-232C serial interface compatible. The CSU receives and transmits signals from and to the WAN line and provides a barrier for electrical interference from either side of the unit. The CSU can also echo loopback signals from the phone company for testing purposes. The DSU manages line control and converts the input and output between RS-232C or V.xx frames from the LAN and the time-division multiplexed (TDM) DSX frames on the T1 line. The DSU manages timing errors and signal regeneration. The DSU provides an interface (much like a modem) between the computer (as the DTE) and the CSU. The generally-accepted T1 distance limitation (CSU) is 6200 feet (1890 meters).

A CSU device is needed to connect to regardless if transmission is voice or data. A CSU provides termination, keep alive, electrical protection, regeneration stores performance reports, and supports loopbacks.

D4 Voice and Data Signaling

The transport of signaling states required in switched voice or data (Switched 56K service). Signaling is done with a "Robbed Bit" method where bit 8 of each channel's timeslot is "robbed" to indicate a

signaling state in the 6th and 12th frames. The effective throughput for the A signaling bit (Frame 6) is 666.66 Bps. The effective throughput for the B signaling bit (Frame 12) is also 666.66 Bps.

DSU

See "CSU/DSU".

dBm

(DeciBels below 1 Milliwatt) A measurement of power loss in decibels using 1 milliwatt as the reference point. A signal received at 1 milliwatt yields 0 dBm. A signal at .1 milliwatt is a loss of 10 dBm.

DCE

(Data Circuit-terminating Equipment) A device that sits between the data terminal equipment (DTE) and a data transmission circuit. Also called data communications equipment and data carrier equipment.

demarc

(demarcation point) the point where communications facilities owned by one organization interface with those of another organization. In telephone terminology, the interface between customer-premises equipment and network service provider equipment. In telephony, a demarcation point is a point at which the telephone company network ends and connects with the wiring at the customer premises. The demarcation point varies between countries and has changed over time.

In the United States, the modern demarcation point is a device defined by FCC rules (47 C.F.R. Part 68) [1] to allow safe connection of third-party telephone Customer-premises equipment and wiring to the Public Switched Telephone Network (PSTN). The modern demarcation point is the network interface device (NID). The NID is telco property. In Canada, the demarcation point varies between building types and service levels. In simple installations, the demarcation point is a junction block where telephone extensions join to connect to the network. In multi-line installations (e.g., a business or apartment building) the demarcation point may be a punch-down block. In the United Kingdom, a demarcation point occurs within a jack (the master socket), whose wiring is partly owned by the customer, and partly owned by the phone company.

AKA network terminating interface (NTI), demarcation, demark, demarc extension, DMARC, or MPOE (minimum point of entry or main point of entry).

Device Description / Circuit ID

An ASCII text string up to 63 bytes that overrides the default Circuit ID, which is the vlan-module-port in binary format. At the ION system device level it is displayed as 'Device Description', MIB variable is 'sysName' in 'system public mib, oid: 1.3.6.1.2.1.1.5. At the ION system port level it is displayed as 'Circuit ID', MIB variable is 'ifAlias' in 'ifXTable' public mib, oid: 1.3.6.1.2.1.31.1.1.1.18.

DHCP

33493 Rev. E

(Dynamic Host Configuration Protocol) A protocol for assigning dynamic IP addresses to devices on a network. With dynamic addressing, a device can have a different IP address every time it connects to the network. DHCP lets a network administrator supervise and distribute IP addresses from a central

point, and automatically sends a new address when a computer is plugged into a different place in the network. (Standard: RFC 2131.)

Discovering / Discovery

Discovery allows a Service OAM capable NID to learn sufficient information (e.g. MAC addresses etc.) regarding other SOAM capable NIDs so that OAM frames can be exchanged with those discovered NIDs.

DMI

(Diagnostic Monitoring Interface) Adds parametric monitoring to SFP devices.

DMM / DMR

(Delay Measurement Message / Delay Measurement Response) DMM/DMR is used to measure single-ended (aka, two-way) Frame Delay (FD) and Frame Delay Variation (FDV, aka, Jitter).

DNS

(Domain Name System) An internet service that translates domain names into IP addresses. DNS allows you to use friendly names, such as www.transition.com, to easily locate computers and other resources on a TCP/IP-based network.

DNS is a standard technology for managing the names of Web sites and other Internet domains. DNS lets you type a <u>name</u> into your web browser to automatically find that <u>address</u> on the Internet.

DNS server

(Domain Name System server) any computer registered to join the Domain Name System. A DNS server runs special-purpose networking software, features a public IP address, and contains a database of network names and addresses for other Internet hosts.

Dr. Watson

Dr. Watson for Windows is a program error debugger. The information obtained and logged by Dr. Watson is used by technical support groups to diagnose a program error for a computer running Windows. A text file (Drwtsn32.log) is created whenever an error is detected, and can be delivered to support personnel by the method they prefer. There is an option to create a crash dump file, which is a binary file that a programmer can load into a debugger.

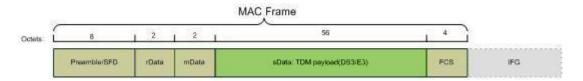
DS1

(Digital signal 1), also known as "T1" or "DS-1", is a T-carrier signaling scheme defined by Bell Labs. DS1 is a common telecommunications standard in North America and Japan used to transmit voice and data between devices. E1 is used in place of T1 outside of North America, Japan, and South Korea. Technically, DS1 is the logical bit pattern used over a physical T1 line; however, the terms "DS1" and "T1" are often used interchangeably. Contrast with "DS3".

DS3 (or DS-3)

(Digital Signal 3) a digital signal level 3 T-carrier (may also be referred to as a T3 line). The data rate for this type of signal is 44.736 Mbit/s. This level of carrier can transport 28 DS1 level signals within its payload (672 DS0 level channels). Bellcore standard GR-139-CORE defines type 734 and 735 cables for this application. Due to losses, there are differing distance limitations for each type of cable. Type 734 has a larger center conductor and insulator for lower losses for a given distance. This level of transport or circuit is mostly used between telephony carriers, both wired and wireless, and typically by OC1 optical connections.

DS3 Frame Format


A DS3 frame consists of six fields:

Preamble 7 octets of 1010_1010
 SFD 1 octet,1010_1011
 rData 2 octet, reserved data,
 mData 2 octet, management data

5: sData (56) octets, TDM Payload data(DS3/E3 or T1/E1);

6. FCS 4 octet, Frame check sequence

A sample DS3 frame is shown below:

Contrast "T1 Frame Format".

DSx

(Digital Signal Designator) Digital signal X is based on ANSI T1.107 guidelines. The ITU-TS guidelines vary somewhat. The set of signals and related T-carrier and E-carrier systems are summarized below.

DSx	Data Rate	DS0 Multiple	T-Carrier	E-Carrier
DS0	64 Kbps	1		
DS1	1.544 Mbps	24	T1	
	2.048 Mbps	32		E1
DS1C	3.152 Mbps	48		
DS2	6.312 Mbps	96	T2	
	8.448 Mbps	128		E2
	34.368 Mbps	512		E3
DS3	44.736 Mbps	672	T3	
	139.264 Mbps	2048		E4
DS4/NA	139.264 Mbps	2176		
DS4	274.176 Mbps	4032		
	565.148 Mbps	4 E4 channels		E5

The North American signal hierarchy was created by the old US 'Bell system' (AT&T) in the early 1960's and was the world's first digital voice system. It is based on multiples of the DSO signal. The European digital hierarchy excludes the small North American overhead.

The signal hierarchy defines the levels of multiplexing - the first level of the hierarchy multiplexes (combines) a number of DSOs into a single digital signal (with a DSx designator) which is then placed on a carrier (with a T-x designator). The DSx defines an abstract signal or speed and the T-x defines a physical format or 'pipe'. The DSx and T-x series specifications and most other telecom specifications are standardized by the ANSI accredited Committee T1 (T1E1), which is now part of the Alliance for Telecommunications Industry Solutions (ATIS) which in turn represents the US at ITU standard sessions (via the US Department of State).

DTE

(Data Terminal Equipment) The RS-232C interface that a computer uses to exchange data with a modem or other serial device. An end instrument that converts user information into signals or reconverts received signals (e.g., a terminal).

DWDM

(Dense Wavelength Division Multiplexing) In some optical fiber networks, multiple signals are carried together as separate wavelengths of light in a multiplexed signal using DWDM.

Page 272 of 299

E1 (or E-1)

A type of narrowband transmission facility, used outside of North America, parts of Asia, and Japan. Line Type E1 standards include Signal Standard = 2M, Number of Timeslots = 32, Bit Rate = 2.048 Mbps. Contrast "T1" and "J1" formats.

The European digital transmission format devised by the ITU-TS and given the name by the Conference of European Postal and Telecommunication Administration (CEPT). E1 is the equivalent of the North American T-carrier system format. E2 through E5 are carriers in increasing multiples of the E1 format. E1 signals carry data at a rate of 2.048 Mbps and can carry 32 channels of 64 Kbps each. E1 carries data at a slightly higher data rate than T-1 (which carries 1.544 Mbps) because E1 does not do bit-robbing and all eight bits per channel are used to code the signal (unlike T-1). E1 and T-1 can be interconnected for international use.

E1 Facilities

The International CCITT framing format adopted by Europe, Central/South America, etc.. These facilities operate at 2.048 Mbps. This framing format is actually defined in CCITT Recommendation G.704, although Recommendation G.732 supplements G.704.

- G.704: Synchronous Frame Structures Used and Primary and Secondary Hierarchical Levels
- G.732: Characteristics of Primary PCM Multiplex Equipment Operating at 2048 Kbps.

See also "G.732/G.704 Framing ".

E1 Frame Format

See "T1 frame". Contrast "DS3 Frame Format".

E2 (E-2)

A line that carries four multiplexed E1 signals with a data rate of 8.448 Mbps.

E3 (E-3)

A line that carries 16 E1 signals with a data rate of 34.368 Mbps.

E3 Frame Format

See "DS3 Frame Format".

E4 (E-4)

A line that carries four E3 channels with a data rate of 139.264 Mbps.

EEA

(European Economic Area) Established on 1 January 1994 following an agreement between member states of the European Free Trade Association, the European Community, and all member states of the European Union (EU). It allows these EFTA countries to participate in the European single market without joining the EU.

EIR

(Excess Information Rate) The max rate over the CIR. The EIR specifies the average rate (greater than or equal to the CIR) up to which service frames are admitted into the Service Provider network. EIR frames are considered EIR-conformant. EIR frames are delivered with no performance guarantees, and are not CIR-conformant (however, service frames that are not EIR-conformant are discarded). See also "CIR".

ESD

(Electrostatic Discharge) a sudden, momentary electric current that flows between two objects.

ESF

(Extended-Superframe Format) in T-carrier, a synchronization frame that delineates 24 DS1 frames ESF requires less frequent synchronization than the T-carrier D-4 superframe format. ESF also facilitates nonchannelized operation and clear-channel operation.

The standard ESF frame is 193 bits long (1 framing bit + 24 8-bit timeslots). Each timeslot is scanned at a rate of 8000 times per second (as in D4/SF). The ESF line rate is 1.544 Mbps, which supports a data "payload" of 1.536 Mbps. There are three types of framing bits; Frame Pattern Sync (FPS), Datalink (DL), and Cyclic Redundancy Check (CRC) bits. Of the 8 Kbps framing bit bandwidth:

- 4 Kbps is allocated to the Datalink
- 2 Kbps is allocated to the CRC-6 character
- 2 Kbps is used for synchronization purposes

Compare to "Superframe".

ETSI

(European Telecommunications Standards Institute) the corresponding body of ANSI in Europe, involved in providing and adapting standards for the European telecommunications. See http://www.etsi.org/.

Event log

A record of events such as port link down, configuration changes, etc. in a database.

FCC

(Federal Communications Commission) An independent United States government agency established by the Communications Act of 1934 that regulates interstate and international communications by radio, television, wire, satellite and cable. The FCC's jurisdiction covers the 50 states, the District of Columbia, and U.S. possessions.

FDL

(Facility Data Link) refers to a repeating, 16-bit ESF data link code word to the T1 remote end requesting that it enter into a network payload loopback. The 16-bit ESF data link code word can be specified as either 00001110 11111111 for FDL ANSI or 00010010 11111111 for FDL Bellcore. This places the remote device into loopback mode per the ANSI T1.403 Specification or per the TR-TSY-000312 Specification.

Two common FDL protocols exist in the extended superframe (ESF) framing mode. One is defined in ANSI document T1.403-1989; the other is defined in AT&T publication TR54016. Depending on the carrier used, either one (or both) of these protocols may be required.

FDM

(Frequency Division Multiplexing) In FDM, multiple channels are combined onto a single aggregate signal for transmission. The channels are separated in the 'aggregate' signal by their Frequency. There are always some unused frequency spaces between channels, known as "guard bands". These guard bands reduce the effects of "bleed over" between adjacent channels, a condition more commonly referred to as "crosstalk".

FDM was the first multiplexing scheme to enjoy wide scale network deployment, and such systems are still in use today. However, Time Division Multiplexing is the preferred approach today, due to its ability to support native data I/O (Input/Output) channels.

FDX

(Full Duplex) Communication in both directions simultaneously.

FEF

(Far End Fault) A troubleshooting feature usually used in conjunction with Link Pass Through to notify both end devices of a loss of link.

Firmware

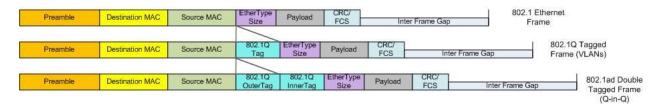
Computer programs and data stored in hardware - typically in read-only memory (ROM) or programmable read-only memory (PROM) - such that the programs and data cannot be dynamically written or modified during execution of the programs.

Flow Control

Prevents congestion and overloading when a sending port is transmitting more data than a receiving port can receive. (Standard: IEEE 802.3X.)

FPGA

(Field Programmable Gate Array) an integrated circuit that can be configured after manufacturing (thus "field-programmable"). The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC).


Frame

A unit of data that is transmitted between network points on an Ethernet network. An Ethernet frame has explicit minimum and maximum lengths and a set of required data that must appear within it. Each frame on an IEEE 802 LAN MAC conveys a protocol data unit (PDU) between MAC Service users. There are three types of frame; untagged, VLAN-tagged, and priority-tagged.

Frame Format

In Ethernet, a frame is a way of arranging sections of data for transfer over a computer network. The frame is a key element of an Ethernet system. A typical Ethernet frame is made up of three elements: a pair of addresses, the data itself, and an error checking field.

Frame Formats for 802.1, 802.1Q and 802.1ad are illustrated below.

Frame Loss Ratio

Frame loss ratio is the number of service frames not delivered divided by the total number of service frames during time interval T, where the number of service frames not delivered is the difference between the number of service frames arriving at the ingress ETH flow point and the number of service frames delivered at the egress ETH flow point in a point-to-point ETH connection.

Frame Delay

Frame delay is the round-trip delay for a frame, defined as the time elapsed from the start of transmission of the first bit of the frame by a source node until the reception of the last bit of the loopbacked frame by the same source node, when the loopback is performed at the frame's destination node.

FTP

(File Transfer Protocol) A standard network protocol used to exchange and manipulate files over a TCP/IP based network, such as the Internet. See also "TFTP".

G.732/G.704 Framing

The standard G.732/G.704 frame is 32 timeslots, with each timeslot consisting of an 8-bit byte. A Multiframe consists of 16 frames, numbered 0 to 15. The timeslots are numbered 0 to 31. Timeslot 0 is used for:

- Synchronization
- Alarm Transport
- International Carrier use

Timeslot 16 may be used to transmit Channel Associated Signaling (CAS) information. Note that G.732 does not define signaling states, only the transport of the states through the G.732 frame. However, G.704 does recognize the requirement for Common Channel Signaling and also allows the TRANSPARENT End-To-End transport of Timeslot 16. See also "CCITT International E1 Facilities".

GBIC

(Gigabit Interface Converter) A transceiver that converts serial electrical signals to serial optical signals and vice versa. In networking, a GBIC is used to interface a fiber optic system with an Ethernet system, such as Fibre Channel and Gigabit Ethernet.

Gbps

(Gigabits Per Second) Data transfer speeds as measured in gigabits.

GUI

(Graphical User Interface) A type of user interface item that allows people to interact with programs in more ways than typing. A GUI offers graphical icons, and visual indicators, as opposed to text-based interfaces, typed command labels or text navigation to fully represent the information and actions available to a user. The actions are usually performed through direct manipulation of the graphical elements.

HSCP

(High-Security Console Password)

HTML

(HyperText Markup Language) The predominant markup language for web pages. It provides a means to create structured documents by denoting structural semantics for text such as headings, paragraphs, lists etc as well as for links, quotes, and other items.

HTTPS

(Hypertext Transfer Protocol Secure) A combination of the Hypertext Transfer Protocol with the TLS protocol to provide encryption and secure identification of the server.

IEC

(International Electrotechnical Commission) The world's leading organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

IEEE

(Institute of Electrical and Electronics Engineers) An international non-profit, professional organization for the advancement of technology related to electricity.

Intrusion detection

A form of security management for computers and networks that gathers and analyzes information from various areas to identify possible security breaches, which include both intrusions (attacks from outside the organization) and misuse (attacks from within the organization).

You can set up x6010 intrusion detection using the CLI command "Rx Power Intrusion Threshold", or via the web interface from x6010 > Port 2 > DMI tab > Rx Power Intrusion Threshold field. If the threshold is

exceeded, the message "ALARM: Receive power is below specified threshold. Fiber trap intrusion may be in progress." displays. See "DMI (Diagnostic Maintenance Interface) Test" on page 196.

In-band control

A characteristic of network protocols with which data control is regulated. In-band control passes control data on the same connection as main data. Protocols such as HTTP use in-band control (conversely, Out-of-band control is used by protocols such as FTP). One of two common methods of transmitting SNMP requests and responses, by sending them on the same media as the user data. See also "Out-of-band control".

In-band signaling

The sending of metadata and control information in the same band, on the same channel, as used for data. For example, a telephone number is encoded and transmitted across the phone line as DTMF tones. These tones "control" the phone system by telling the telephone company's equipment where to route the call. See also "Out-of-band signaling".

ION

(Intelligent Optical Networking) the third generation of chassis-based "Intelligent Optical Networking" from Transition Networks. Also the 'ION Platform' or the ION system'.

IΡ

(Internet Protocol) One of the core protocols of the Internet Protocol Suite. IP is one of the two original components of the suite (TCP is the other), so the entire suite is commonly referred to as TCP/IP. IP is the method or protocol by which data is sent from one computer to another on the Internet. Each computer (known as a host) on the Internet has at least one IP address that uniquely identifies it from all other computers on the Internet.

ITU

ITU is the leading United Nations agency for information and communication technology issues, and the global focal point for governments and the private sector in developing networks and services. For nearly 145 years, ITU has coordinated the shared global use of the radio spectrum, worked to improve telecommunication infrastructure in the developing world, and established worldwide standards that foster seamless interconnection of a vast range of communications systems. See http://www.itu.int/net/about/itu-t.aspx.

J1

A type of narrowband transmission facility, used exclusively in Japan, usually between a PBX and a switch. Line Type J1 standards include Signal Standard = Y-1, Number of Timeslots = 32, Bit Rate = 2.048 Mbps. Contrast "T1" and "E1".

Jumbo Frame

Jumbo frames are frames larger than the standard Ethernet frame size, which is 1518 bytes (1522 if VLAN-tagged). Though this is not a standard, more vendors are adding support for jumbo frames. An initiative to increase the maximum size of the MAC Client Data field from 1500-bytes to 9000-bytes. The initiative was not adopted by the IEEE 802.3 Working Group, but it was endorsed by a number of other companies. Larger frames would provide a more efficient use of the network bandwidth while reducing the number of frames that have to be processed. The Jumbo Frame proposal restricts the use of Jumbo Frames to full-duplex Ethernet links, and defines a "link negotiation" protocol that allows a station to determine if the station on the other end of the segment is capable of supporting Jumbo Frames.

Kbps

(Kilobits Per Second) Data transfer speeds as measured in kilobits.

LAN

(Local Area Network) A group of computers and associated devices that share a common communications line or wireless link. Typically, connected devices share the resources of a single processor or server within a small geographic area (for example, within an office building).

Last Gasp

This feature enables the device to store a small amount of power to enable it to send out an SNMP trap to alert the management console in the event of a power failure. The notification of an impending power loss before it happens allows for quicker resolution of the power loss. See also "Dying Gasp".

LBM

(Loopback Message) A unicast CFM PDU transmitted by a MEP, addressed to a specific MP, in the expectation of receiving an LBR.

LBO

(Line Build Out) a device, circuit, or configurable parameter used to reduce the signal strength to the right level for interfacing with terminal equipment. It can also reduce cross talk between pairs sharing the same sheath. It serves to correctly and continuously match the device automatically to any line length and to varying line parameters. The LBO compensates for the length variations ranging from 0 m to 200 meters of the 22 AWG twisted pair cable between a DS-1 line card and the DSX-1 cross-connect. At the cross-connect, the signal must fit into the North American DSX-1 standard pulse-shape mask.

LBR

(Loopback Reply) A unicast CFM PDU transmitted by an MP to a MEP, in response to an LBM received from that MEP.

LED

(Light Emitting Diode) An electronic light source.

Line

A unidirectional E1 or T1 physical connection.

Link

A unidirectional channel residing in one timeslot of a E1 or T1 Line, carrying 64 kbit/s (64'000 bit/s) raw digital data.

Little Endian

Bit ordering within a byte where bits are sent serially starting with the LSB (least significant byte) and ending with the MSB (most significant byte). Ethernet uses Little Endian bit ordering. Contrast "Big Endian".

LLDP

(Link Layer Discovery Protocol) A standard method for Ethernet Network devices such as switches, routers and wireless access points to advertise information about themselves to other nodes on the network and store the information they discover. LLDP runs on all 802 media. The protocol runs over the data-link layer only, allowing two systems running different network layer protocols to learn about each other.

Long Haul

For Gigabit Ethernet, one of several industry wiring types offered. 1000BASE-LX/LH is a long wavelength used with "long haul" fiber optic cable for a maximum length of 10 kilometers.

Long-haul optics refers to the transmission of visible light signals over optical fiber cable for great distances, especially with no (or minimal) use of repeaters. Fiber optic cable loss takes place because the wavelength determines the index of refraction (observed as a "loss-over-time" effect in long fiber optic cable runs). The energy for each signal can be kept within a narrow range of wavelengths, which has led to the development of WDM (wave-division multiplexing) and DWDM (dense wave-division multiplexing) to minimize loss problems.

Loopback (LB)

The Loopback feature puts a device in a special mode that enables the device to loop back the signal from the RX port to the TX port on either media for testing and troubleshooting purposes. Test signals can then be inserted into the link and looped back as received by a device to test a particular segment of the link (i.e. copper or fiber). Loopback can be either local or remote depending on the location of the converter in the link.

LOS

(Loss of Signal) an indicator on a networking device to indicate that a network signal or connection has been lost. If a LOS is encountered, it is an indication that the cable connected to the network device is bad, has no connection on the other end, network is improperly configured, or the network device itself is bad.

MAC

(Media Access Control) An address that is a unique value associated with a network adapter. MAC addresses are also known as hardware addresses or physical addresses. They uniquely identify an adapter on a LAN.

MAN

(Metropolitan Area Network) a network that interconnects users with computer resources in a geographic area or region larger than a LAN, but smaller than a WAN. Applies to the interconnection of networks in a city into a single larger network. Can also mean the interconnection of several LANs by bridging them with backbone lines.

Mbps

(Megabits per second) Data transfer speed measured in thousands of bits per second.

MCU (also µC, uC, or MCU)

(Micro-Controller Unit) is a small computer on a single integrated circuit containing a processor core, memory, and programmable input/output peripherals. Program memory in the form of NOR flash or OTP ROM is also often included on chip, an sometimes a small amount of RAM. Microcontrollers are designed for embedded applications (compared to microprocessors used in PCs or other general purpose applications. AKA ""computer on a chip".

MDI

(Medium Dependent Interface) A type of Ethernet port connection using twisted pair cabling. The MDI is the component of the media attachment unit that provides the physical and electrical connection to the cabling medium. MDI ports connect to MDIX ports via straight-through twisted pair cabling; both MDI-to-MDI and MDIX-to-MDIX connections use crossover twisted pair cabling. See also MDIX.

The standard wiring for end stations is known as Media Dependent Interface (MDI), and the standard wiring for hubs and switches is known as Media Dependent Interface with Crossover (MDIX). The x6010 device's *AutoCross* feature makes it possible for hardware to automatically correct errors in cable selection.

MDIX

(MDI Crossover) A version of MDI that enables connection between like devices. The standard wiring for end stations is known as Media Dependent Interface (MDI), and the standard wiring for hubs and switches is known as Media Dependent Interface with Crossover (MDIX).

The x6010 device's *AutoCross* feature makes it possible for hardware to automatically correct errors in cable selection. See also MDI.

Metro Ethernet

The use of Carrier Ethernet technology in a MAN. Since it is typically a collective endeavor with multiple financial contributors, Metro Ethernet offers a more cost-effective, reliable, scalable solution with bandwidth management than proprietary networks.

MIB

(Management Information Base) The set of variables that are used to monitor and control a managed device. A formal description of a set of network objects that can be managed using the Simple Network Management Protocol (SNMP). The format of the MIB is defined as part of the SNMP.

MIBs stems from the OSI/ISO Network management model and are a type of database used to manage the devices in a communications network. A MIB comprises a collection of objects in a (virtual) database used to manage entities (such as routers and switches) in a network. Objects in the MIB are defined using a subset of Abstract Syntax Notation One (ASN.1) called "Structure of Management Information Version 2 (SMIv2)" RFC 2578. The database is hierarchical (tree-structured) and entries are addressed through object identifiers. IETF RFCs discuss MIBs, notably RFC 1155, "Structure and Identification of Management Information for TCP/IP based internets", RFC 1213, "Management Information Base for Network Management of TCP/IP-based internets", and RFC 1157, "A Simple Network Management Protocol".

MIB Module

Strictly speaking, a MIB is just a set of ideas; however, since the MIB Module is the most tangible representation of the MIB, the terms "MIB" and "MIB Module" are used interchangeably by many. To prevent naming conflicts and provide organization, all of the manageable features of all products from all vendors are arranged into one enormous tree structure referred to as the MIB Tree or "The MIB," which is managed by the Internet Assigned Numbers Authority (IANA). Each vendor of SNMP equipment has an exclusive section of The MIB Tree that they control.

MII

(Media Independent Interface) a standard interface used to connect a Fast Ethernet (i.e. 100 Mbit/s) MAC-block to a PHY chip. The MII may be used to connect the MAC to an external PHY via a pluggable connector (see photo), or to connect a MAC chip to a PHY chip on the same printed circuit board. Media independence allows the use of several different types of PHY devices for connecting to different media (i.e. Ethernet, fiber optic, etc.) without changing the MAC hardware. Equivalent MII standards/speeds are: AUI (for 10 megabit Ethernet), GMII (for gigabit Ethernet), and XGMII (for 10 gigabit Ethernet). The MII bus (standardized by IEEE 802.3u) is a generic bus that connects different types of PHYs to the same network Media Access Controller (MAC).

MSA

(Multi-Source Agreement) Common product specifications for pluggable fiber optic transceivers.

MT-RJ

(Mechanical Transfer-Registered Jack) A small form-factor fiber optic connector which resembles the RJ-45 connector used in Ethernet networks.

Multiplexing

The process where multiple channels are combined for transmission over a common transmission path. The two predominant ways of multiplexing are:

- Frequency Division Multiplexing (FDM)
- Time Division Multiplexing (TDM)

Multiplexing involves sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end. See also "TDM" or "DWDM".

NIC

(Network Interface Card or Network Interface Controller) A computer hardware component designed to allow computers to communicate over a computer network. A NIC is both an OSI layer 1 (physical layer) and layer 2 (data link layer) device, as it provides physical access to a networking medium and provides a low-level addressing system through the use of MAC addresses. It allows users to connect to each other either by using wireless communications or cables.

NID

(Network Interface Device) A device that serves as the demarcation point between the carrier's local loop and the customer's premises wiring. In telecommunications, a NID is a device that serves as the demarcation point between the carrier's local loop and the customer's premises wiring. In fiber-to-the-premises systems, the signal is transmitted to the customer premises using fiber optic technologies. In general terms, a NID may also be called a Network Interface Unit (NIU), Telephone Network Interface (TNI), Slide-in-card (SIC), or a slide-in-module. See also "NIU".

NIU

(Network Interface Unit) a device that serves as a common interface for various other devices within a local area network (LAN), or as an interface to allow networked computers to connect to an outside network. A network interface card (NIC) is a type of NIU. The NIU converts protocols and associated code and acts as a buffer between connected hardware to enable an interface between a LAN and another network. See also "NID".

NMS

(Network Management Station) A high-end workstation that, like the Managed Device, is also connected to the network. A station on the network that executes network management applications that monitor and control network elements such as hosts, gateways and terminal servers. See also "SNMP".

Non Intrusive test

The ability to troubleshoot a circuit while it is in use.

NTP

(Network Time Protocol) A protocol for synchronizing the clocks of computer systems over packetswitched, variable-latency data networks.

OID

(Object Identifier) Known as a "MIB object identifier" or "MIB variable" in the SNMP network management protocol, an OID is a number assigned to devices in a network for identification purposes. Each branch of the MIB Tree has a number and a name, and the complete path from the top of the tree down to the point of interest forms the name of that point. A name created in this way is known as an Object ID or OID. In SNMP, an Object Identifier points to a particular parameter in the SNMP agent.

OSI

(Open Systems Interconnection) A standard description or reference model for how messages should be transmitted between any two points in a telecommunication network. Its purpose is to guide product implementors so that their products will consistently work with other products. The reference model defines seven layers of functions that take place at each end of a communication.

OUI

(Organizationally Unique Identifier) the Ethernet Vendor Address component. Ethernet hardware addresses are 48 bits, expressed as 12 hexadecimal digits (0-9, plus A-F, capitalized). These 12 hex digits consist of the first/left 6 digits (which should match the vendor of the Ethernet interface within the station) and the last/right 6 digits, which specify the interface serial number for that interface vendor. These high-order 3 octets (6 hex digits) are called the Organizationally Unique Identifier or OUI.

Out-of-band control

A characteristic of network protocols with which data control is regulated. Out-of-band control passes control data on a separate connection from main data. Protocols such as FTP use out-of-band control. FTP sends its control information (user ID, password, and put/get commands) on one connection, and sends data files on a separate parallel connection. Since it uses a separate connection for the control information, FTP is considered to use "out-of-band control".

One of two common methods of transmitting SNMP requests and responses, by sending them on different media from the user data (so that the SNMP data can not interfere with the user data). See also "In-band control".

Out-of-band signaling

Generally, out-of-band refers to communications which occur outside of a previously established communication method or channel. In telecommunications, out-of-band communication exchanges call control information in a separate band from the data or voice stream, or on an entirely separate, dedicated channel. This is used for separating two different types of data. In computer networking, out-of-band data ("urgent data" in TCP) looks to the application like a separate data stream from the main data stream. Here, the out-of-band data may be lost if the application cannot keep up with it. See also "In-band signaling".

Pause

The Pause feature (data pacing) uses Pause frames for flow control on full duplex Ethernet connections. If a sending device is transmitting data faster than the receiving device can accept it, the receiving station will send a pause frame to halt the transmission of the sender for a specified period of time.

Pause frames are only used on full duplex Ethernet link segments defined by IEEE 802.3x that use MAC control frames to carry the pause commands. Only stations configured for full duplex operation can send pause frames.

PDU

(Protocol Data Units) **1.** Information that is delivered as a unit among peer entities of a network and that may contain control information, address information or data. **2.** In a layered system, a unit of data which is specified in a protocol of a given layer and which consists of protocol control information and possibly user data of that layer.

PHY

(Physical Interface) an abbreviation for the physical layer of the OSI model. An instantiation of PHY connects a link layer device (often called a MAC) to a physical medium such as an optical fiber or copper cable.

PON

(Passive Optical Network) A point-to-multipoint fiber to the premises network architecture using unpowered optical splitters. Passive optical networks do not use electrically powered components to split the signal. Instead, the signal is distributed using beam splitters. Each splitter typically splits the signal from a single fiber into 16, 32, or 64 fibers (depending on the manufacturer).

ITU-T G.983 / 984 sub-types include APON (ATM Passive Optical Network), BPON (Broadband PON), IEEE 802.3ah EPON or GEPON (Ethernet PON), and GPON (Gigabit PON).

Provisioning

In general, "providing" or "making available". 1) The process of providing users with access to data and technology resources. 2) The process of providing customers or clients with accounts, the appropriate access to those accounts, and the rights associated with those accounts.

Red Alarm

A Red Alarm is declared after detecting a Loss of Signal, a Loss of Frame (a persistent OOF event), or an Alarm Indication Signal (AIS), for at least 2-10 seconds. A Red Alarm is cleared at the onset of 10 consecutive seconds with no SES (severely errored seconds). See also "LOS", "AIS".

RJ-45

The standard connector utilized on 4-pair (8-wire) UTP (Unshielded Twisted Pair) cable. The RJ-45 connector is the standard connector for Ethernet, T1, and modern digital telephone systems.

RMII

(Reduced Media Independent Interface) a standard that addresses the connection of Ethernet physical layer transceivers (PHY) to Ethernet switches. It reduces the number of signals/pins required for connection to the PHY from 16 (for an MII-compliant interface) to between 6 and 10. RMII is capable of supporting 10 and 100 Mbit/s; gigabit interfaces need a wider interface.

RMON

(Remote Network Monitoring) Software that supports the monitoring and protocol analysis of LANs. RMON is a network management protocol that gathers remote network information. (Standard: RFC 1271.) See also "SNMP".

Router

A device that forwards data packets along networks. A router is connected to at least two networks, commonly two LANs or WANs or a LAN and an ISP/network. Routers are located at gateways, the places where two or more networks connect. Routers use headers and forwarding tables to determine the best path for forwarding packets, and protocols such as ICMP to communicate with each other and configure the best route between two hosts. Routers do not typically perform much filtering of data. Contrast "Switch".

RS-232

(Recommended Standard 232) A standard for serial binary data signals connecting between a DTE (Data Terminal Equipment) and a DCE (Data Circuit-terminating Equipment). It is commonly used in computer serial ports.

SDC

(Signal Detect on Copper) a x6010 status LED; when lit indicates twisted-pair copper link is up. Flashing LED (once/second) indicates transmitting on link if other link is down. Flashing LED (5 times/second) indicates All Ones detected on the Link. See also "SDF".

SDF

(Signal Detect on Fiber) a x6010 status LED when lit indicates fiber link is up. Flashing LED (once/second) indicates transmitting on link if other link is down. Flashing LED (5 times/second) indicates All Ones detected on the Link. See also "SDC".

SF

(Superframe Format - D4 Framing) The standard SF frame is 193 bits long (1 Framing bit + 24 8-bit timeslots). A Superframe consists of twelve 193-bit frames. A framing bit can support different functions, depending on which of the twelve frames it is in. Contrast "ESF".

SFP

(Small Form-Factor Pluggable) A compact, hot-pluggable transceiver used in telecommunication and data communications applications. It interfaces a network device mother board (for a switch, router, media converter or similar device) to a fiber optic or copper networking cable. The SFP transceiver is specified by a multi-source agreement (MSA) between competing manufacturers. The SFP was designed after the GBIC interface, and allows greater port density (number of transceivers per inch along the edge of a mother board) than the GBIC, thus SFP is also known as "mini-GBIC". Optical SFP transceivers support digital diagnostics monitoring (DDM) functions according to the industry-standard SFF-8472. This feature lets you monitor real-time parameters of the SFP, such as optical output power, optical input power, temperature, laser bias current, and transceiver supply voltage. AKA, Digital Optical Monitoring (DOM), DMI (Diagnostic Monitoring Interface), or DMM (Diagnostic Maintenance Monitoring).

SGMII

(Serial Gigabit Media Independent Interface) A standard Gigabit Ethernet interface used to connect an Ethernet MAC-block to a PHY. To carry frame data and link rate information between a 10/100/1000 PHY and an Ethernet MAC, SGMII uses a different pair for data signals and for clocking signals, with both being present in each direction (i.e., TX and RX). The x6010 NIDs have SGMII support for use with 10/100/1000BASE-T copper SFPs. The x6010 uses the **set ether phymode=SGMII** CLI command to select SGMII mode.

SMAC

(Static MAC) a MAC address that is manually entered in an address table that must be manually removed. It can be a unicast or multicast address. It does not age and is retained when the switch restarts. You can add and remove static addresses and define the forwarding.

Smart Jack

a device used to test integrity of T-1 circuits remotely from a central office (CO). Installed at the customer premises in the form of a semi-intelligent demarcation point (demarc), the smart jack is completely passive until activated remotely by a digital code, (e.g., "FACILITY 2") sent down the T-1 line. This code activates a relay that breaks the T-1 circuit and closes a receive-to-transmit loop across the T-1 at the customer end, sending the signal back to the CO. This allows the CO to confirm the integrity of the loop without having to dispatch a roll (send a technician to the site).

SNMP

(Simple Network Management Protocol) A request-response protocol that defines network communication between a Managed Device and a Network Management Station (NMS). A set of protocols for managing complex IP networks. (Standard: RFC 1157.)

SNMP Message

A sequence representing the entire SNMP message, which consists of the SNMP version, Community String, and SNMP PDU.

SNMP model (SNMP paradigm)

The SNMP model can be looked at as a manager / agent paradigm, where the SNMP "manager" software is developed for the human direction of retrieving of information from an SNMP "agent. (The model can be viewed as a spy (manager) asking the agent for certain information in a specific format, and the receiving the information (or an explanation of why it is not being provided).

SNMP SMI

(SNMP Structure of Management Information) a collection of managed objects, residing in a virtual information store. The SMI is divided into three parts: module definitions, object definitions, and, notification definitions. There are two types of SMI: SMIv1 and SMIv2. For additional information see IETF RFC 1155 v1 and RFC 2578 v2.

SNMP Version

An integer that identifies the version of SNMP (e.g., SNMPv1 = 0).

SNMP Community String

An octet string that may contain a string used to add security to SNMP devices.

SNMP PDU

An SNMP PDU contains the body of an SNMP message. There are several types of PDUs (e.g., GetRequest, GetResponse, and SetRequest).

SNTP

(Simple Network Time Protocol) A less complicated version of Network Time Protocol (NTP), which is a system for synchronizing the clocks of networked computer systems, primarily when data transfer is handled via the Internet. SNTP is used to synchronize times on IP devices over a network. (Standard: RFC 2030.)

Static IP addressing

"Static" comes from the word stationary, meaning not moving. A static IP address means it never changes. A static IP address is an IP address permanently assigned to a workstation. If a network uses static addressing, it means that each network interface has an assigned IP address that it always uses whenever it is online. With static addressing, the computer has a well-defined IP address which it uses always and which no other computer ever uses.

Static MAC Entry

Static MAC entry support means that users can manually assign MAC addresses to ports that never age.

STP

(Shielded Twisted Pair) A special kind of copper telephone wiring used in some business installations. An outer covering or shield is added to the ordinary twisted pair telephone wires; the shield functions as a ground. Contrast with "UTP".

STS-1

SONET (Synchronous Optical Networking) and SDH (Synchronous Digital Hierarchy) are standardized multiplexing protocols that transfer multiple digital bit streams over optical fiber using lasers or LEDs. The basic unit of framing in SDH is the Synchronous Transport Module, level 1 (STM-1) which operates at 155.52 Mbps. SONET refers to this basic unit as the Synchronous Transport Signal 3, concatenated (STS-3c) or OC-3c, depending on whether the signal is carried electrically (STS) or optically (OC), but its basic functionality, bit rate, and frame size are the same as for STM-1. SONET offers another unit of transmission, the Synchronous Transport Signal 1 (STS-1) or OC-1, operating at 51.84 Mbps. In SONET, the STS-3c/OC-3c signal is composed of three multiplexed STS-1 signals; the STS-3C/OC-3c may be carried on an OC-3 signal. Some manufacturers also support the SDH equivalent of the STS-1/OC-1, known as STM-0.

An STS-1 frame is 810 octets in size, and the STS-1 frame is transmitted as three octets of overhead, followed by 87 octets of payload. This is repeated nine times, until 810 octets have been transmitted, taking 125 μ s.

STS-1 is one of several x6010 TDM / device type options; the STS-1 rate is 51.8Mbps (the other rate options are T1=1.544MHz, E1=2.048MHz, E3=34.4Mbps, and DS3=44.7Mbps).

Switch

A networking device that filters and forwards packets between LAN segments. Switches operate at the data link layer (Layer 2) and sometimes the network layer (Layer 3) of the OSI Model, and can support virtually any packet protocol. LANs that use switches to join segments are called switched LANs or, in the case of Ethernet networks, switched Ethernet LANs. Contrast "Router".

Syslog

A service run mostly on Unix and Linux systems (but also available for other OSes) to track events that occur on the system. Analysis can be performed on these logs using available software to create reports detailing various aspects of the system and/or the network.

T1 (or T-1)

A type of narrowband transmission facility, used primarily in North America and parts of Asia. Line Type E1 standards include Signal Standard = DS1, Number of Timeslots = 24, Bit Rate = 1.544 Mbps. Contrast "E1" and "J1" formats.

(T1 Line/ T1 Carrier) A T1 carrier is a commonly-used digital transmission service in the United States, Canada, and Japan. In these countries, a T1 line consists of 24 separate channels using pulse code modulation (PCM) signals with time-division multiplexing (TDM) at an overall rate of 1.544 million bits per second (Mbps). T1 lines originally used copper wire but now also include optical and wireless media. (Contrast with "E1" Line.)

T1 Frame Formats - SF and ESF

North American T1 facilities operate at 1.544 MBPS. Framing may be either Superframe (D4) format or Extended Superframe (ESF) format. A T1/E1 frame includes seven fields:

 Preamble 	7 octets of 1010_1010
2. SFD	1 octet,1010_1011
3. rData	4 octet, reserved data
4. mData	4 octet, management data
5. PAD	48 octet, used for padding purpose
6: sData	4 octets, TDM Payload data (DS3/E3 or T1/E1)
7. FCS	4 octet, Frame check sequence

Contrast "DS3 Frame Format".

TAOS

(Transmit All Ones) a circuit or device that generates and sends a series of digital "ones" on a line for testing purposes. The x6010 has built-in troubleshooting with the addition of a selectable TAOS (transmit all ones): switch on the fiber and copper interfaces allows the network engineer to test all T1/E1 equipment on that network segment and ensure the network link. The x6010 provides TAOS Enable/Disable on copper and fiber port, which can be managed by x6010 software or hardware DIP switch setting. The x6010 generates the AIS by transmitting all ones (TAOS).

TIA

(Telecommunications Industry Association) a trade association in the US that represents about 600 telecommunications companies. It helps create universal networking and education standards for the telephony, data networking, and convergence industry. The TIA has helped develop networking standards that have been used worldwide, including:

- TIA/EIA-568-B (telecomm cabling standards used in most voice, video and data networks)
- TIA J-STD-607 (Commercial grounding / Earthing standards)
- TIA TIA/EIA-598 (Fiber Optic color coding)

TIA 568 Standard

The Commercial Building Telecommunications Wiring Standard commonly used in North America.

TCP

(Transmission Control Protocol) One of the core protocols of the Internet Protocol Suite. TCP is one of the two original components of the suite (the other being Internet Protocol, or IP), so the entire suite is commonly referred to as TCP/IP. Whereas IP handles lower-level transmissions from computer to computer as a message makes its way across the Internet, TCP operates at a higher level, concerned only with the two end systems, for example a Web browser and a Web server. In particular, TCP provides reliable, ordered delivery of a stream of bytes from a program on one computer to another program on another computer.

TCP/IP

(Transmission Control Protocol/Internet Protocol) The basic communication language or protocol of the Internet and/or a private network (either an intranet or an extranet).

TCP/IP is a two-layer program. The higher layer, Transmission Control Protocol (TCP) manages the assembling of a message or file into smaller packets that are transmitted over the Internet and received by a TCP layer that reassembles the packets into the original message. The lower layer, Internet Protocol (IP), handles the address part of each packet so that it gets to the right destination.

TDM

(Time Division Multiplexing) A method of putting multiple data streams in a single signal by separating the signal into many segments, each having a very short duration. Each individual data stream is reassembled at the receiving end, based on the timing. TDM provides digital multiplexing where two or more apparently simultaneous channels are derived from a given frequency spectrum (i.e., a bit stream) by interleaving pulses representing bits from different channels. Successive pulses represent bits from successive channels (e.g., voice channels in a T1 system). TDM multiplexing occurs when two or more signals or bit streams are transferred apparently simultaneously as sub-channels in one communication channel, but are physically taking turns on the channel. The time domain is divided into several recurrent timeslots of fixed length, one for each sub-channel. A sample byte or data block of sub-channel 1 is transmitted during timeslot 1, sub-channel 2 during timeslot 2, etc. One TDM frame consists of one timeslot per sub-channel plus a synchronization channel (and possibly an error correction channel) before synchronization. After the last byte (data block), the cycle starts all over again with a new frame, starting with the second sample, byte or data block from sub-channel 1, etc.

TDR

1. (Time Domain Reflectometry) A measurement technique used to determine the characteristics of electrical lines by observing reflected waveforms. 2. (Time Domain Reflector) An electronic instrument used to characterize and locate faults in metallic cables (for example, twisted wire pairs, coaxial cables). It can also be used to locate discontinuities in a connector, printed circuit board, or any other electrical path.

Telnet

A user command and an underlying TCP/IP protocol for accessing remote computers. Through Telnet, an administrator or another user can access someone else's computer remotely. Telnet is a terminal emulation program for TCP/IP networks that runs on your computer and connects your PC to a switch management. (Standard: RFC 854.)

TFTP

(Trivial File Transfer Protocol) A file transfer protocol, with the functionality of a very basic form of File Transfer Protocol (FTP). Due to its simple design, TFTP can be implemented using a very small amount of memory. Because it uses UDP rather than IP for transport, TFTP is typically used to transfer firmware upgrades to network equipment.

TFTP Download / Upload

The ability to load firmware, configuration files, etc. through a TFTP server. (AKA, TFTP. Standard: RFC 1350.)

TFTP Root Directory

The location on the console device (PC) where files are placed when received, and where files to be transmitted should be placed (e.g., C:\TFTP-Root).

TFTP Server

An application that uses the TFTP file transfer protocol to read and write files from/to a remote server. In TFTP, a transfer begins with a request to read or write a file, which also serves to request a connection. If the server grants the request, the connection is opened and the file is sent in fixed length blocks of 512 bytes. Each data packet contains one block of data, and must be acknowledged by an acknowledgment packet before the next packet can be sent. Examples of available packages include Open TFTP Server, Tftpd32, WinAgents TFTP Server for Windows, SolarWinds free TFTP Server, TFTP Server 1.6 for Linux, and TftpServer 3.3.1, a TFTP server enhancement to the standard Mac OSX distribution.

Throughput

The maximum rate at which no frame is dropped. This is typically measured under test conditions.

TLS

(Transport Layer Security) A protocol that ensures privacy between communicating applications and their users on the Internet. When a server and client communicate, TLS ensures that no third party may eavesdrop or tamper with any message. TLS is the successor to the Secure Sockets Layer (SSL).

TOS

(Type of Service) The ToS byte in the IPv4 header has had several purposes over time, and has been defined in various ways by IETF RFC 791, RFC 1122, RFC 1349, RFC 2474, and RFC 3168. Currently, the ToS byte is a six-bit Differentiated Services Code Point and a two-bit Explicit Congestion Notification field.

The ToS model described in RFC 2474 uses the Differentiated Services Field (DS field) in the IPv4 Header and IPv6 Header. See also CoS and QoS.

Trap

In SNMP, a trap is a type of PDU used to report an alert or other asynchronous event about a managed subsystem. Also, a place in a program for handling unexpected or unallowable conditions - for example, by sending an error message to a log or to a program user. If a return code from another program was being checked by a calling program, a return code value that was unexpected and unplanned for could cause a branch to a trap that recorded the situation, and take other appropriate action.

An ION system trap is a one-way notification (e.g., from the IONMM to the NMS) that alerts the administrator about instances of MIB-defined asynchronous events on the managed device. It is the only

operation that is initiated by the IONMM rather than the NMS. For a management system to understand a trap sent to it by the IONMM, the NMS must know what the object identifier (OID) defines. Therefore, it must have the MIB for that trap loaded. This provides the correct OID information so that the NMS can understand the traps sent to it.

Trunk

A bidirectional E1 or T1 physical connection.

TCP/UDP Port Prioritization

The ability to prioritize traffic internally based on a TCP or UDP port number. (AKA, Layer 4 Prioritization.)

TTL

(Time to live) an Ethernet counter that records the number of times a transmission is sent/received without errors. TTL specifies how long a datagram is allowed to "live" on the network, in terms of router hops. Each router decrements (reduces by one) the value of the TTL field prior to transmitting it. If the TTL field drops to zero, the datagram is assumed to have taken too long a route and is discarded.

The default TTL for ION software is 64. This means that a test packet must be successfully sent and received 63 times before a TTL expired message is generated. You can change the TTL value (e.g., a value of 255 is a demanding test because the packet must be sent and received error free 254 times).

UDP

(User Datagram Protocol) A connectionless protocol that, like TCP, runs on top of IP networks. Unlike TCP/IP, UDP/IP provides very few error recovery services, offering instead a direct way to send and receive datagrams over an IP network. It's used primarily for broadcasting messages over a network.

Unicast

One of the four forms of IP addressing, each with its own unique properties. The most common concept of an IP address is in unicast addressing, available in both IPv4 and IPv6. It normally refers to a single sender or a single receiver, and can be used for both sending and receiving. Usually, a unicast address is associated with a single device or host, but it is not a one-to-one correspondence. Some individual PCs have several distinct unicast addresses, each for its own distinct purpose. Sending the same data to multiple unicast addresses requires the sender to send all the data many times over, once for each recipient. See also Multicast.

Unicast destination

A host or router that can be identified by a unique unicast IP address. See also Multicast destination.

USB

(Universal Serial Bus) A plug-and-play interface between a computer and add-on devices, such as media players, keyboards, telephones, digital cameras, scanners, flash drives, joysticks and printers.

UTC

(Coordinated Universal Time) A time standard based on International Atomic Time (TAI) with leap seconds added at irregular intervals to compensate for the Earth's slowing rotation. Leap seconds are used to allow UTC to closely track UT1, which is mean solar time at the Royal Observatory, Greenwich.

UTP

(Unshielded Twisted Pair) The most common form of twisted pair wiring, because it is less expensive and easier to work with than Shielded Twisted Pair. UTP is used in Ethernet 10Base-T and 100Base-T networks, as well as in home and office telephone wiring. The twist in UTP helps to reduce crosstalk interference between wire pairs. Contrast "STP".

VAC

Volts AC (alternating current, as opposed to DC – direct current).

VCP

(Virtual Com Port) A driver that allows a USB device to appear as an additional COM port. The USB device can be accessed by an application in the same manner as a regular COM port.

Varbind

(Variable bindings) In SNMP, a sequence of two fields, an Object ID and the value for/from that Object ID.. It's the variable number of values that are included in an SNMP packet. Each varbind is made of an OID, type, and value.

VDC

Volts DC (direct current, as opposed to AC – alternating current).

VOIP

(Voice over Internet Protocol) A general term for a family of transmission technologies for delivery of voice communications over IP networks such as the Internet or other packet-switched networks.

Well Known Ethernet Multicast Addresses

Some common Ethernet multicast MAC addresses are shown below with their related Field Type and typical usage.

Ethernet Multicast Address	Usage		
01-00-0C-CC-CC	CDP (Cisco Discovery Protocol), VTP (VLAN Trunking Protocol)		
01-00-0C-CC-CC	Cisco Shared Spanning Tree Protocol Address		
01-80-C2-00-00-00	Spanning Tree Protocol (for bridges) (IEEE 802.1D)		
01-80-C2-00-00-01	Ethernet OAM Protocol (IEEE 802.3ah)		
01-80-C2-00-00-02	IEEE Std 802.3 Slow Protocols multicast address		
01-80-C2-00-00-03	IEEE Std 802.1X PAE address		
01-80-C2-00-00-04	IEEE MAC-specific control protocols		
01-80-C2-00-00-08	Spanning Tree Protocol (for provider bridges) (IEEE 802.1AD)		
01-00-5E-xx-xx-xx	IPv4 Multicast (RFC 1112)		
33-33-xx-xx-xx	IPv6 Multicast (RFC 2464)		

Well Known Ports

The set of all available port numbers are divided into three ranges: Well Known Ports, Registered Ports, and Dynamic and/or Private Ports. The Well Known Ports are those from 0 through 1023. The Registered Ports are those from 1024 through 49151. Registered ports require IANA registration. The Dynamic and/or Private Ports are those from 49152 through 65535. Port 443 is reserved for the HTTPS, port 179 for the BGP Border Gateway Protocol, and port 161 for SNMP.

To see all the used and listening ports on your computer, use the **netstat** (or similar) command line command. For further port assignment information, see IETF RFC 1700.

Port Number	Description
20	FTP
22	SSH Remote Login Protocol
23	Telnet
25	Simple Mail Transfer Protocol (SMTP)
53	Domain Name System (DNS)
69	Trivial File Transfer Protocol (TFTP)
80	HTTP
143	Interim Mail Access Protocol (IMAP)
161	SNMP /TCP
161	SNMP /UDP
161	SNMPTRAP /TCP
162	SNMPTRAP /UDP
179	Border Gateway Protocol (BGP)
190	Gateway Access Control Protocol (GACP)
389	Lightweight Directory Access Protocol (LDAP)

443	HTTPS
546	DHCP Client
547	DHCP Server

xSTP

Spanning Tree Protocols (multiple variations) defined in MEF specification 17. See also "STP".

Yellow Alarm

A Yellow Alarm is declared after detecting the Yellow Signal. See ANSI T1.107-1989.

Index

AC power, 35	DMI, 203
AIS Detection, 12	DMI
AIS Transmit, 62	Configuring, Web method, 204
Alarm Conditions, 240	DMI configuration, 62
Archive file	Documentation conventions, 29
Creating, 103	Editing Commands, 109
Uploading, 104	Error Events, 240
Backing up the configuration, 75, 77, 78	Error messages
Backup, 74	CLI commands, 141
Cable specifications, 253	Web interface, 173
Chassis installation, 31	Ethernet connection
Circuit ID, 62	Telnet CLI, 41
CLI	Web interface, 42
Configuration quick reference, 251	Features
CLI Commands, 109	Management module, 10
CLI error messages, 141	Firmware
CLI hierarchy, 47	Archive file, 103
COM port	Backing up, 75, 78, 108
Configuring, 38	Database index file (db.idx), 103
Properties, 38	Upgrading, 95
Compliance information, 246	FocalPoint, 46
Config File, 80	GUI, 46
Configuration	Help, 109
Backing up, 75, 78	HyperTerminal, configuring, 38
HyperTerminal, 38	In-band Loopback Code Detection, 14, 218
Restoring, 81, 84	Install
Configuration quick reference, 251, 253, 254	Chassis model, 31
Configure AIS Transmit, 62	IONMM, 31
Configure Circuit ID, 62	SFPs, 36
Configure DMI, 62	Standalone model, 32
Configure Loopback Management, 62	USB driver, 40
Configure Loopback Type, 62	Jumper settings, 212
Configure ports, 62	Jumpers, 26
Connect AC power, 35	Loopback Management, 62
Connecting by	Loopback Test, 13
Telnet, 41	Loopback Type configuration, 62
Web, 42	LOS Detection, 14
Conventions, documentation, 29	Menuing system, 54
Database index file, 103	Models, 21, 22
db.idx.file, 103	Network access, 41
db.zip file, 103	Telnet session, 41
Defaults	Web interface, 42
Reset factory onfigur, 88	Network management system (NMS), 20, 46
DIP Switch settings, 212	OS support, 40
DIP Switches, 26	Ports configuration, 62

Problem conditions, 130 Configuring, CLI method, 203 Provisioning, 74 Tabletop installation, 33 Provisioning tab, 75, 78, 81, 84 Tech Support, 241 Rack mount installation, 32 Telnet Reboot, 92, 124 Default login, 249 Web method, 93 Setup, 41 Terminate session, 42 Remote Management, 17 Terminate Reset Factory defaults, 88 Telnet session, 42 Uptime, 90 USB interface, 40 Reset to factory defaults, 125 **TFTP** Server address, 104 Restart **ION MM, 92** Upgrading firmware, 97, 103 Restore, 74 Troubleshooting, 127 Restoring the configuration, 81, 84 Upgrade firmware Serial interface Other modules, 103 Setup, 40 **USB** Setup Configure COM port, 38 Serial interface, 40 Connection, 39 Driver installation, 40, 42 Telnet, 41 USB, 40 Setup, 40 Web interface, 42 Terminate connection, 40 SFP installation, 36 Wall mount installation, 34 Warranty, 245 Signing in, 42 Signing out, 44 Web interface Simple network management protocol, see Error messages, 173 SNMP, 20, 46 Signing in, 42 SNMP, 20, 46 Signing out, 44 SOAM

Transition Networks

10900 Red Circle Drive

Minnetonka, MN 55343 USA

Tel: 952- 941-7600 or 1-800-526-9267

Fax: 952-941-2322

Copyright © 2010-2019 Transition Networks. All rights reserved. Printed in the U.S.A.

ION System x6010 Managed T1/E1-to-Fiber Network Interface Device (NID) User Guide, 33493 Rev. E